Documentos donde el Tema es "Materias > Ingeniería"
Subir un nivel |
2024
Artículo
Materias > Biomedicina
Materias > Ciencias Sociales
Materias > Ingeniería
Universidad Europea del Atlántico > Investigación > Producción Científica
Fundación Universitaria Internacional de Colombia > Investigación > Artículos y libros
Universidad Internacional Iberoamericana México > Investigación > Producción Científica
Universidad Internacional Iberoamericana Puerto Rico > Investigación > Producción Científica
Universidad Internacional do Cuanza > Investigación > Producción Científica
Universidad de La Romana > Investigación > Producción Científica
Abierto
Inglés
Aim: The development of predictive models for patients treated by emergency medical services (EMS) is on the rise in the emergency field. However, how these models evolve over time has not been studied. The objective of the present work is to compare the characteristics of patients who present mortality in the short, medium and long term, and to derive and validate a predictive model for each mortality time. Methods: A prospective multicenter study was conducted, which included adult patients with unselected acute illness who were treated by EMS. The primary outcome was noncumulative mortality from all causes by time windows including 30-day mortality, 31- to 180-day mortality, and 181- to 365-day mortality. Prehospital predictors included demographic variables, standard vital signs, prehospital laboratory tests, and comorbidities. Results: A total of 4830 patients were enrolled. The noncumulative mortalities at 30, 180, and 365 days were 10.8%, 6.6%, and 3.5%, respectively. The best predictive value was shown for 30-day mortality (AUC = 0.930; 95% CI: 0.919–0.940), followed by 180-day (AUC = 0.852; 95% CI: 0.832–0.871) and 365-day (AUC = 0.806; 95% CI: 0.778–0.833) mortality. Discussion: Rapid characterization of patients at risk of short-, medium-, or long-term mortality could help EMS to improve the treatment of patients suffering from acute illnesses.
metadata
Enriquez de Salamanca Gambara, Rodrigo; Sanz-García, Ancor; del Pozo Vegas, Carlos; López-Izquierdo, Raúl; Sánchez Soberón, Irene; Delgado Benito, Juan F.; Martínez Díaz, Raquel; Mazas Pérez-Oleaga, Cristina; Martínez López, Nohora Milena; Dominguez Azpíroz, Irma y Martín-Rodríguez, Francisco
mail
SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, raquel.martinez@uneatlantico.es, cristina.mazas@uneatlantico.es, nohora.martinez@uneatlantico.es, irma.dominguez@unini.edu.mx, SIN ESPECIFICAR
(2024)
A Comparison of the Clinical Characteristics of Short-, Mid-, and Long-Term Mortality in Patients Attended by the Emergency Medical Services: An Observational Study.
Diagnostics, 14 (12).
p. 1292.
ISSN 2075-4418
Artículo
Materias > Ingeniería
Materias > Psicología
Universidad Europea del Atlántico > Investigación > Producción Científica
Fundación Universitaria Internacional de Colombia > Investigación > Artículos y libros
Universidad Internacional Iberoamericana México > Investigación > Producción Científica
Universidad Internacional Iberoamericana Puerto Rico > Investigación > Producción Científica
Universidad Internacional do Cuanza > Investigación > Producción Científica
Abierto
Inglés
Predicting depression intensity from microblogs and social media posts has numerous benefits and applications, including predicting early psychological disorders and stress in individuals or the general public. A major challenge in predicting depression using social media posts is that the existing studies do not focus on predicting the intensity of depression in social media texts but rather only perform the binary classification of depression and moreover noisy data makes it difficult to predict the true depression in the social media text. This study intends to begin by collecting relevant Tweets and generating a corpus of 210000 public tweets using Twitter public application programming interfaces (APIs). A strategy is devised to filter out only depression-related tweets by creating a list of relevant hashtags to reduce noise in the corpus. Furthermore, an algorithm is developed to annotate the data into three depression classes: ‘Mild,’ ‘Moderate,’ and ‘Severe,’ based on International Classification of Diseases-10 (ICD-10) depression diagnostic criteria. Different baseline classifiers are applied to the annotated dataset to get a preliminary idea of classification performance on the corpus. Further FastText-based model is applied and fine-tuned with different preprocessing techniques and hyperparameter tuning to produce the tuned model, which significantly increases the depression classification performance to an 84% F1 score and 90% accuracy compared to baselines. Finally, a FastText-based weighted soft voting ensemble (WSVE) is proposed to boost the model’s performance by combining several other classifiers and assigning weights to individual models according to their individual performances. The proposed WSVE outperformed all baselines as well as FastText alone, with an F1 of 89%, 5% higher than FastText alone, and an accuracy of 93%, 3% higher than FastText alone. The proposed model better captures the contextual features of the relatively small sample class and aids in the detection of early depression intensity prediction from tweets with impactful performances.
metadata
Rizwan, Muhammad; Mushtaq, Muhammad Faheem; Rafiq, Maryam; Mehmood, Arif; Diez, Isabel de la Torre; Gracia Villar, Mónica; Garay, Helena y Ashraf, Imran
mail
SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, monica.gracia@uneatlantico.es, helena.garay@uneatlantico.es, SIN ESPECIFICAR
(2024)
Depression Intensity Classification from Tweets Using FastText Based Weighted Soft Voting Ensemble.
Computers, Materials & Continua, 78 (2).
pp. 2047-2066.
ISSN 1546-2226
Artículo
Materias > Ingeniería
Universidad Europea del Atlántico > Investigación > Producción Científica
Fundación Universitaria Internacional de Colombia > Investigación > Artículos y libros
Universidad Internacional Iberoamericana México > Investigación > Producción Científica
Universidad Internacional Iberoamericana Puerto Rico > Investigación > Producción Científica
Universidad Internacional do Cuanza > Investigación > Producción Científica
Abierto
Inglés
With the outbreak of the COVID-19 pandemic, social isolation and quarantine have become commonplace across the world. IoT health monitoring solutions eliminate the need for regular doctor visits and interactions among patients and medical personnel. Many patients in wards or intensive care units require continuous monitoring of their health. Continuous patient monitoring is a hectic practice in hospitals with limited staff; in a pandemic situation like COVID-19, it becomes much more difficult practice when hospitals are working at full capacity and there is still a risk of medical workers being infected. In this study, we propose an Internet of Things (IoT)-based patient health monitoring system that collects real-time data on important health indicators such as pulse rate, blood oxygen saturation, and body temperature but can be expanded to include more parameters. Our system is comprised of a hardware component that collects and transmits data from sensors to a cloud-based storage system, where it can be accessed and analyzed by healthcare specialists. The ESP-32 microcontroller interfaces with the multiple sensors and wirelessly transmits the collected data to the cloud storage system. A pulse oximeter is utilized in our system to measure blood oxygen saturation and body temperature, as well as a heart rate monitor to measure pulse rate. A web-based interface is also implemented, allowing healthcare practitioners to access and visualize the collected data in real-time, making remote patient monitoring easier. Overall, our IoT-based patient health monitoring system represents a significant advancement in remote patient monitoring, allowing healthcare practitioners to access real-time data on important health metrics and detect potential health issues before they escalate.
metadata
Islam, Md. Milon; Shafi, Imran; Din, Sadia; Farooq, Siddique; Díez, Isabel de la Torre; Breñosa, Jose; Martínez Espinosa, Julio César y Ashraf, Imran
mail
SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, josemanuel.brenosa@uneatlantico.es, ulio.martinez@unini.edu.mx, SIN ESPECIFICAR
(2024)
Design and development of patient health tracking, monitoring and big data storage using Internet of Things and real time cloud computing.
PLOS ONE, 19 (3).
e0298582.
ISSN 1932-6203
Artículo
Materias > Ingeniería
Universidad Europea del Atlántico > Investigación > Producción Científica
Fundación Universitaria Internacional de Colombia > Investigación > Artículos y libros
Universidad Internacional Iberoamericana México > Investigación > Producción Científica
Universidad Internacional Iberoamericana Puerto Rico > Investigación > Producción Científica
Universidad Internacional do Cuanza > Investigación > Producción Científica
Abierto
Inglés
Requirements specifications written in natural language enable us to understand a program’s intended functionality, which we can then translate into operational software. At varying stages of requirement specification, multiple ambiguities emerge. Ambiguities may appear at several levels including the syntactic, semantic, domain, lexical, and pragmatic levels. The primary objective of this study is to identify requirements’ pragmatic ambiguity. Pragmatic ambiguity occurs when the same set of circumstances can be interpreted in multiple ways. It requires consideration of the context statement of the requirements. Prior research has developed methods for obtaining concepts based on individual nodes, so there is room for improvement in the requirements interpretation procedure. This research aims to develop a more effective model for identifying pragmatic ambiguity in requirement definition. To better interpret requirements, we introduced the Concept Maximum Matching (CMM) technique, which extracts concepts based on edges. The CMM technique significantly improves precision because it permits a more accurate interpretation of requirements based on the relative weight of their edges. Obtaining an F-measure score of 0.754 as opposed to 0.563 in existing models, the evaluation results demonstrate that CMM is a substantial improvement over the previous method.
metadata
Aslam, Khadija; Iqbal, Faiza; Altaf, Ayesha; Hussain, Naveed; Gracia Villar, Mónica; Soriano Flores, Emmanuel; Diez, Isabel De La Torre y Ashraf, Imran
mail
SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, monica.gracia@uneatlantico.es, emmanuel.soriano@uneatlantico.es, SIN ESPECIFICAR, SIN ESPECIFICAR
(2024)
Detecting Pragmatic Ambiguity in Requirement Specification Using Novel Concept Maximum Matching Approach Based on Graph Network.
IEEE Access.
p. 1.
ISSN 2169-3536
Artículo
Materias > Biomedicina
Materias > Ingeniería
Universidad Europea del Atlántico > Investigación > Producción Científica
Fundación Universitaria Internacional de Colombia > Investigación > Artículos y libros
Universidad Internacional Iberoamericana México > Investigación > Producción Científica
Universidad Internacional Iberoamericana Puerto Rico > Investigación > Producción Científica
Universidad de La Romana > Investigación > Producción Científica
Abierto
Inglés
Non-Insulin-Dependent Diabetes Mellitus (NIDDM) is a chronic health condition caused by high blood sugar levels, and if not treated early, it can lead to serious complications i.e. blindness. Human Activity Recognition (HAR) offers potential for early NIDDM diagnosis, emerging as a key application for HAR technology. This research introduces DiabSense, a state-of-the-art smartphone-dependent system for early staging of NIDDM. DiabSense incorporates HAR and Diabetic Retinopathy (DR) upon leveraging the power of two different Graph Neural Networks (GNN). HAR uses a comprehensive array of 23 human activities resembling Diabetes symptoms, and DR is a prevalent complication of NIDDM. Graph Attention Network (GAT) in HAR achieved 98.32% accuracy on sensor data, while Graph Convolutional Network (GCN) in the Aptos 2019 dataset scored 84.48%, surpassing other state-of-the-art models. The trained GCN analyzed retinal images of four experimental human subjects for DR report generation, and GAT generated their average duration of daily activities over 30 days. The daily activities in non-diabetic periods of diabetic patients were measured and compared with the daily activities of the experimental subjects, which helped generate risk factors. Fusing risk factors with DR conditions enabled early diagnosis recommendations for the experimental subjects despite the absence of any apparent symptoms. The comparison of DiabSense system outcome with clinical diagnosis reports in the experimental subjects was conducted using the A1C test. The test results confirmed the accurate assessment of early diagnosis requirements for experimental subjects by the system. Overall, DiabSense exhibits significant potential for ensuring early NIDDM treatment, improving millions of lives worldwide.
metadata
Alam, Md Nuho Ul; Hasnine, Ibrahim; Bahadur, Erfanul Hoque; Masum, Abdul Kadar Muhammad; Briones Urbano, Mercedes; Masías Vergara, Manuel; Uddin, Jia; Ashraf, Imran y Samad, Md. Abdus
mail
SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, mercedes.briones@uneatlantico.es, manuel.masias@uneatlantico.es, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR
(2024)
DiabSense: early diagnosis of non-insulin-dependent diabetes mellitus using smartphone-based human activity recognition and diabetic retinopathy analysis with Graph Neural Network.
Journal of Big Data, 11 (1).
ISSN 2196-1115
Artículo
Materias > Ingeniería
Universidad Europea del Atlántico > Investigación > Producción Científica
Fundación Universitaria Internacional de Colombia > Investigación > Artículos y libros
Universidad Internacional Iberoamericana México > Investigación > Producción Científica
Universidad Internacional Iberoamericana Puerto Rico > Investigación > Producción Científica
Universidad Internacional do Cuanza > Investigación > Producción Científica
Abierto
Inglés
The IoT (Internet of Things) has played a promising role in e-healthcare applications during the last decade. Medical sensors record a variety of data and transmit them over the IoT network to facilitate remote patient monitoring. When a patient visits a hospital he may need to connect or disconnect medical devices from the medical healthcare system frequently. Also, multiple entities (e.g., doctors, medical staff, etc.) need access to patient data and require distinct sets of patient data. As a result of the dynamic nature of medical devices, medical users require frequent access to data, which raises complex security concerns. Granting access to a whole set of data creates privacy issues. Also, each of these medical user need to grant access rights to a specific set of medical data, which is quite a tedious task. In order to provide role-based access to medical users, this study proposes a blockchain-based framework for authenticating multiple entities based on the trust domain to reduce the administrative burden. This study is further validated by simulation on the infura blockchain using solidity and Python. The results demonstrate that role-based authorization and multi-entities authentication have been implemented and the owner of medical data can control access rights at any time and grant medical users easy access to a set of data in a healthcare system. The system has minimal latency compared to existing blockchain systems that lack multi-entity authentication and role-based authorization.
metadata
Alam, Shadab; Aslam, Muhammad Shehzad; Altaf, Ayesha; Iqbal, Faiza; Nigar, Natasha; Castanedo Galán, Juan; Gavilanes Aray, Daniel; Díez, Isabel de la Torre y Ashraf, Imran
mail
SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, juan.castanedo@uneatlantico.es, daniel.gavilanes@uneatlantico.es, SIN ESPECIFICAR, SIN ESPECIFICAR
(2024)
Novel model to authenticate role-based medical users for blockchain-based IoMT devices.
PLOS ONE, 19 (7).
e0304774.
ISSN 1932-6203
Artículo
Materias > Ingeniería
Universidad Europea del Atlántico > Investigación > Producción Científica
Fundación Universitaria Internacional de Colombia > Investigación > Artículos y libros
Universidad Internacional Iberoamericana México > Investigación > Producción Científica
Universidad Internacional Iberoamericana Puerto Rico > Investigación > Producción Científica
Universidad Internacional do Cuanza > Investigación > Producción Científica
Abierto
Inglés
Pneumonia is a potentially life-threatening infectious disease that is typically diagnosed through physical examinations and diagnostic imaging techniques such as chest X-rays, ultrasounds or lung biopsies. Accurate diagnosis is crucial as wrong diagnosis, inadequate treatment or lack of treatment can cause serious consequences for patients and may become fatal. The advancements in deep learning have significantly contributed to aiding medical experts in diagnosing pneumonia by assisting in their decision-making process. By leveraging deep learning models, healthcare professionals can enhance diagnostic accuracy and make informed treatment decisions for patients suspected of having pneumonia. In this study, six deep learning models including CNN, InceptionResNetV2, Xception, VGG16, ResNet50 and EfficientNetV2L are implemented and evaluated. The study also incorporates the Adam optimizer, which effectively adjusts the epoch for all the models. The models are trained on a dataset of 5856 chest X-ray images and show 87.78%, 88.94%, 90.7%, 91.66%, 87.98% and 94.02% accuracy for CNN, InceptionResNetV2, Xception, VGG16, ResNet50 and EfficientNetV2L, respectively. Notably, EfficientNetV2L demonstrates the highest accuracy and proves its robustness for pneumonia detection. These findings highlight the potential of deep learning models in accurately detecting and predicting pneumonia based on chest X-ray images, providing valuable support in clinical decision-making and improving patient treatment.
metadata
Ali, Mudasir; Shahroz, Mobeen; Akram, Urooj; Mushtaq, Muhammad Faheem; Carvajal-Altamiranda, Stefanía; Aparicio Obregón, Silvia; Díez, Isabel De La Torre y Ashraf, Imran
mail
SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, stefania.carvajal@uneatlantico.es, silvia.aparicio@uneatlantico.es, SIN ESPECIFICAR, SIN ESPECIFICAR
(2024)
Pneumonia Detection Using Chest Radiographs With Novel EfficientNetV2L Model.
IEEE Access, 12.
pp. 34691-34707.
ISSN 2169-3536
Artículo
Materias > Ingeniería
Universidad Europea del Atlántico > Investigación > Producción Científica
Fundación Universitaria Internacional de Colombia > Investigación > Artículos y libros
Universidad Internacional Iberoamericana México > Investigación > Producción Científica
Universidad Internacional do Cuanza > Investigación > Producción Científica
Universidad de La Romana > Investigación > Producción Científica
Abierto
Inglés
Driving while drowsy poses significant risks, including reduced cognitive function and the potential for accidents, which can lead to severe consequences such as trauma, economic losses, injuries, or death. The use of artificial intelligence can enable effective detection of driver drowsiness, helping to prevent accidents and enhance driver performance. This research aims to address the crucial need for real-time and accurate drowsiness detection to mitigate the impact of fatigue-related accidents. Leveraging ultra-wideband radar data collected over five minutes, the dataset was segmented into one-minute chunks and transformed into grayscale images. Spatial features are retrieved from the images using a two-dimensional Convolutional Neural Network. Following that, these features were used to train and test multiple machine learning classifiers. The ensemble classifier RF-XGB-SVM, which combines Random Forest, XGBoost, and Support Vector Machine using a hard voting criterion, performed admirably with an accuracy of 96.6%. Additionally, the proposed approach was validated with a robust k-fold score of 97% and a standard deviation of 0.018, demonstrating significant results. The dataset is augmented using Generative Adversarial Networks, resulting in improved accuracies for all models. Among them, the RF-XGB-SVM model outperformed the rest with an accuracy score of 99.58%.
metadata
Siddiqui, Hafeez Ur Rehman; Akmal, Ambreen; Iqbal, Muhammad; Saleem, Adil Ali; Raza, Muhammad Amjad; Zafar, Kainat; Zaib, Aqsa; Dudley, Sandra; Arambarri, Jon; Kuc Castilla, Ángel Gabriel y Rustam, Furqan
mail
SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, jon.arambarri@uneatlantico.es, SIN ESPECIFICAR, SIN ESPECIFICAR
(2024)
Ultra-Wide Band Radar Empowered Driver Drowsiness Detection with Convolutional Spatial Feature Engineering and Artificial Intelligence.
Sensors, 24 (12).
p. 3754.
ISSN 1424-8220
Artículo
Materias > Ingeniería
Universidad Europea del Atlántico > Investigación > Producción Científica
Fundación Universitaria Internacional de Colombia > Investigación > Revistas Científicas
Universidad Internacional Iberoamericana México > Investigación > Producción Científica
Universidad Internacional Iberoamericana Puerto Rico > Investigación > Producción Científica
Universidad Internacional do Cuanza > Investigación > Producción Científica
Abierto
Inglés
Named Entity Recognition (NER) is a natural language processing task that has been widely explored for different languages in the recent decade but is still an under-researched area for the Urdu language due to its rich morphology and language complexities. Existing state-of-the-art studies on Urdu NER use various deep-learning approaches through automatic feature selection using word embeddings. This paper presents a deep learning approach for Urdu NER that harnesses FastText and Floret word embeddings to capture the contextual information of words by considering the surrounding context of words for improved feature extraction. The pre-trained FastText and Floret word embeddings are publicly available for Urdu language which are utilized to generate feature vectors of four benchmark Urdu language datasets. These features are then used as input to train various combinations of Long Short-Term Memory (LSTM), Bidirectional LSTM (BiLSTM), Gated Recurrent Unit (GRU), CRF, and deep learning models. The results show that our proposed approach significantly outperforms existing state-of-the-art studies on Urdu NER, achieving an F-score of up to 0.98 when using BiLSTM+GRU with Floret embeddings. Error analysis shows a low classification error rate ranging from 1.24% to 3.63% across various datasets showing the robustness of the proposed approach. The performance comparison shows that the proposed approach significantly outperforms similar existing studies.
metadata
Khan, Hikmat Ullah; Anam, Rimsha; Anwar, Muhammad Waqas; Jamal, Muhammad Hasan; Bajwa, Usama Ijaz; Diez, Isabel de la Torre; Silva Alvarado, Eduardo René; Soriano Flores, Emmanuel y Ashraf, Imran
mail
SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, eduardo.silva@funiber.org, emmanuel.soriano@uneatlantico.es, SIN ESPECIFICAR
(2024)
A deep learning approach for Named Entity Recognition in Urdu language.
PLOS ONE, 19 (3).
e0300725.
ISSN 1932-6203
2023
Artículo
Materias > Ingeniería
Universidad Europea del Atlántico > Investigación > Producción Científica
Fundación Universitaria Internacional de Colombia > Investigación > Artículos y libros
Universidad Internacional Iberoamericana México > Investigación > Producción Científica
Universidad Internacional Iberoamericana Puerto Rico > Investigación > Producción Científica
Universidad Internacional do Cuanza > Investigación > Producción Científica
Abierto
Inglés
Chronic obstructive pulmonary disease (COPD) is a severe and chronic ailment that is currently ranked as the third most common cause of mortality across the globe. COPD patients often experience debilitating symptoms such as chronic coughing, shortness of breath, and fatigue. Sadly, the disease frequently goes undiagnosed until it is too late, leaving patients without the care they desperately need. So, COPD detection at an early stage is crucial to prevent further damage to the lungs and improve quality of life. Traditional COPD detection methods often rely on physical examinations and tests such as spirometry, chest radiography, blood gas tests, and genetic tests. However, these methods may not always be accurate or accessible. One of the key vital signs for detecting COPD is the patient’s respiration rate. However, it is crucial to consider a patient’s medical and demographic characteristics simultaneously for better detection results. To address this issue, this study aims to detect COPD patients using artificial intelligence techniques. To achieve this goal, a novel framework is proposed that utilizes ultra-wideband (UWB) radar-based temporal and spectral features to build machine learning and deep learning models. This new set of temporal and spectral features is extracted from respiration data collected non-invasively from 1.5 m distance using UWB radar. Different machine learning and deep learning models are trained and tested on the collected dataset. The findings are promising, with a high accuracy score of 100% for COPD detection. This means that the proposed framework could potentially save lives by identifying COPD patients at an early stage. The k-fold cross-validation technique and performance comparison with the state-of-the-art studies are applied to validate its performance, ensuring that the results are robust and reliable. The high accuracy score achieved in the study implies that the proposed framework has the potential for the efficient detection of COPD at an early stage.
metadata
Siddiqui, Hafeez-Ur-Rehman; Raza, Ali; Saleem, Adil Ali; Rustam, Furqan; Díez, Isabel de la Torre; Gavilanes Aray, Daniel; Lipari, Vivian; Ashraf, Imran y Dudley, Sandra
mail
SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, daniel.gavilanes@uneatlantico.es, vivian.lipari@uneatlantico.es, SIN ESPECIFICAR, SIN ESPECIFICAR
(2023)
An Approach to Detect Chronic Obstructive Pulmonary Disease Using UWB Radar-Based Temporal and Spectral Features.
Diagnostics, 13 (6).
p. 1096.
ISSN 2075-4418
Artículo
Materias > Ingeniería
Universidad Europea del Atlántico > Investigación > Producción Científica
Fundación Universitaria Internacional de Colombia > Investigación > Artículos y libros
Universidad Internacional Iberoamericana México > Investigación > Producción Científica
Universidad Internacional Iberoamericana Puerto Rico > Investigación > Producción Científica
Universidad Internacional do Cuanza > Investigación > Producción Científica
Abierto
Inglés
The precise prediction of power estimates of wind–solar renewable energy sources becomes challenging due to their intermittent nature and difference in intensity between day and night. Machine-learning algorithms are non-linear mapping functions to approximate any given function from known input–output pairs and can be used for this purpose. This paper presents an artificial neural network (ANN)-based method to predict hybrid wind–solar resources and estimate power generation by correlating wind speed and solar radiation for real-time data. The proposed ANN allows optimization of the hybrid system’s operation by efficient wind and solar energy production estimation for a given set of weather conditions. The proposed model uses temperature, humidity, air pressure, solar radiation, optimum angle, and target values of known wind speeds, solar radiation, and optimum angle. A normalization function to narrow the error distribution and an iterative method with the Levenberg–Marquardt training function is used to reduce error. The experimental results show the effectiveness of the proposed approach against the existing wind, solar, or wind–solar estimation methods. It is envisaged that such an intelligent yet simplified method for predicting wind speed, solar radiation, and optimum angle, and designing wind–solar hybrid systems can improve the accuracy and efficiency of renewable energy generation.
metadata
Shafi, Imran; Khan, Harris; Farooq, Muhammad Siddique; Diez, Isabel de la Torre; Miró Vera, Yini Airet; Castanedo Galán, Juan y Ashraf, Imran
mail
SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, yini.miro@uneatlantico.es, juan.castanedo@uneatlantico.es, SIN ESPECIFICAR
(2023)
An Artificial Neural Network-Based Approach for Real-Time Hybrid Wind–Solar Resource Assessment and Power Estimation.
Energies, 16 (10).
p. 4171.
ISSN 1996-1073
Artículo
Materias > Ingeniería
Universidad Europea del Atlántico > Investigación > Producción Científica
Fundación Universitaria Internacional de Colombia > Investigación > Artículos y libros
Universidad Internacional Iberoamericana México > Investigación > Producción Científica
Universidad Internacional Iberoamericana Puerto Rico > Investigación > Producción Científica
Universidad Internacional do Cuanza > Investigación > Producción Científica
Abierto
Inglés
Project-based organizations need to procure different commodities, and the failure/success of a project depends heavily on procurement management. Companies must refine and develop methods to simplify and optimize the procurement process in a highly competitive environment. This paper presents a methodology to help managers of project-based organizations analyze procurement processes to determine the optimal framework for simultaneously addressing multiple objectives. These goals include minimizing the time between the generation and required approval for a purchase, identifying unnamed activities, and allocating the budget efficiently. In this paper, we apply process mining algorithms to a dataset consisting of event logs on Oracle Financials-based enterprise resource planning (ERP) procurement processes in ERP systems and demonstrate interesting results leading to project procurement intelligence (PPI). The provided log data is the real-life data consisting of 180,462 events referring to seven activities within 43,101 cases. The logged procurement processes are filtered and analyzed using the open-source process mining frameworks PrOM and Disco. As a result of the process mining activities, a simulation of the discovered process model derived from the event log of the entire procurement process is presented, and the most frequent potential behaviors are identified. This analysis and extraction of frequent processes from corporate event logs help organizations understand, adapt, and redesign procurement operations and, most importantly, make them more efficient and of higher quality. This study shows that after the successful formulation of guiding principles, data refinement, and process structure optimization, the case study results are considered significant by the organization’s management.
metadata
Butt, Naveed Anwer; Mahmood, Zafar; Sana, Muhammad Usman; Díez, Isabel de la Torre; Castanedo Galán, Juan; Brie, Santiago y Ashraf, Imran
mail
SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, juan.castanedo@uneatlantico.es, santiago.brie@uneatlantico.es, SIN ESPECIFICAR
(2023)
Behavioral and Performance Analysis of a Real-Time Case Study Event Log: A Process Mining Approach.
Applied Sciences, 13 (7).
p. 4145.
ISSN 2076-3417
Artículo
Materias > Ingeniería
Universidad Europea del Atlántico > Investigación > Producción Científica
Fundación Universitaria Internacional de Colombia > Investigación > Artículos y libros
Universidad Internacional Iberoamericana México > Investigación > Producción Científica
Universidad Internacional Iberoamericana Puerto Rico > Investigación > Producción Científica
Universidad Internacional do Cuanza > Investigación > Producción Científica
Abierto
Inglés
Breast cancer is prevalent in women and the second leading cause of death. Conventional breast cancer detection methods require several laboratory tests and medical experts. Automated breast cancer detection is thus very important for timely treatment. This study explores the influence of various feature selection technique to increase the performance of machine learning methods for breast cancer detection. Experimental results shows that use of appropriate features tend to show highly accurate prediction
metadata
Shafique, Rahman; Rustam, Furqan; Choi, Gyu Sang; Díez, Isabel de la Torre; Mahmood, Arif; Lipari, Vivian; Rodríguez Velasco, Carmen Lilí y Ashraf, Imran
mail
SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, vivian.lipari@uneatlantico.es, carmen.rodriguez@uneatlantico.es, SIN ESPECIFICAR
(2023)
Breast Cancer Prediction Using Fine Needle Aspiration Features and Upsampling with Supervised Machine Learning.
Cancers, 15 (3).
p. 681.
ISSN 2072-6694
Artículo
Materias > Ingeniería
Universidad Europea del Atlántico > Investigación > Producción Científica
Fundación Universitaria Internacional de Colombia > Investigación > Artículos y libros
Universidad Internacional Iberoamericana México > Investigación > Producción Científica
Universidad Internacional Iberoamericana Puerto Rico > Investigación > Producción Científica
Universidad Internacional do Cuanza > Investigación > Producción Científica
Abierto
Inglés
SIN ESPECIFICAR
metadata
Ali, Omer; Abbas, Qamar; Mahmood, Khalid; Bautista Thompson, Ernesto; Arambarri, Jon y Ashraf, Imran
mail
SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, ernesto.bautista@unini.edu.mx, jon.arambarri@uneatlantico.es, SIN ESPECIFICAR
(2023)
Competitive Coevolution-Based Improved Phasor Particle Swarm Optimization Algorithm for Solving Continuous Problems.
Mathematics, 11 (21).
p. 4406.
ISSN 2227-7390
Artículo
Materias > Biomedicina
Materias > Ingeniería
Universidad Europea del Atlántico > Investigación > Producción Científica
Fundación Universitaria Internacional de Colombia > Investigación > Artículos y libros
Universidad Internacional Iberoamericana México > Investigación > Producción Científica
Universidad Internacional Iberoamericana Puerto Rico > Investigación > Producción Científica
Universidad Internacional do Cuanza > Investigación > Producción Científica
Abierto
Inglés
Artificial intelligence has made substantial progress in medicine. Automated dental imaging interpretation is one of the most prolific areas of research using AI. X-ray and infrared imaging systems have enabled dental clinicians to identify dental diseases since the 1950s. However, the manual process of dental disease assessment is tedious and error-prone when diagnosed by inexperienced dentists. Thus, researchers have employed different advanced computer vision techniques, and machine- and deep-learning models for dental disease diagnoses using X-ray and near-infrared imagery. Despite the notable development of AI in dentistry, certain factors affect the performance of the proposed approaches, including limited data availability, imbalanced classes, and lack of transparency and interpretability. Hence, it is of utmost importance for the research community to formulate suitable approaches, considering the existing challenges and leveraging findings from the existing studies. Based on an extensive literature review, this survey provides a brief overview of X-ray and near-infrared imaging systems. Additionally, a comprehensive insight into challenges faced by researchers in the dental domain has been brought forth in this survey. The article further offers an amalgamative assessment of both performances and methods evaluated on public benchmarks and concludes with ethical considerations and future research avenues.
metadata
Shafi, Imran; Fatima, Anum; Afzal, Hammad; Díez, Isabel de la Torre; Lipari, Vivian; Breñosa, Jose y Ashraf, Imran
mail
SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, vivian.lipari@uneatlantico.es, josemanuel.brenosa@uneatlantico.es, SIN ESPECIFICAR
(2023)
A Comprehensive Review of Recent Advances in Artificial Intelligence for Dentistry E-Health.
Diagnostics, 13 (13).
p. 2196.
ISSN 2075-4418
Artículo
Materias > Ingeniería
Universidad Europea del Atlántico > Investigación > Producción Científica
Fundación Universitaria Internacional de Colombia > Investigación > Artículos y libros
Universidad Internacional Iberoamericana México > Investigación > Producción Científica
Universidad Internacional Iberoamericana Puerto Rico > Investigación > Producción Científica
Universidad Internacional do Cuanza > Investigación > Producción Científica
Abierto
Inglés
In the field of natural language processing, machine translation is a colossally developing research area that helps humans communicate more effectively by bridging the linguistic gap. In machine translation, normalization and morphological analyses are the first and perhaps the most important modules for information retrieval (IR). To build a morphological analyzer, or to complete the normalization process, it is important to extract the correct root out of different words. Stemming and lemmatization are techniques commonly used to find the correct root words in a language. However, a few studies on IR systems for the Urdu language have shown that lemmatization is more effective than stemming due to infixes found in Urdu words. This paper presents a lemmatization algorithm based on recurrent neural network models for the Urdu language. However, lemmatization techniques for resource-scarce languages such as Urdu are not very common. The proposed model is trained and tested on two datasets, namely, the Urdu Monolingual Corpus (UMC) and the Universal Dependencies Corpus of Urdu (UDU). The datasets are lemmatized with the help of recurrent neural network models. The Word2Vec model and edit trees are used to generate semantic and syntactic embedding. Bidirectional long short-term memory (BiLSTM), bidirectional gated recurrent unit (BiGRU), bidirectional gated recurrent neural network (BiGRNN), and attention-free encoder–decoder (AFED) models are trained under defined hyperparameters. Experimental results show that the attention-free encoder-decoder model achieves an accuracy, precision, recall, and F-score of 0.96, 0.95, 0.95, and 0.95, respectively, and outperforms existing models
metadata
Hafeez, Rabab; Anwar, Muhammad Waqas; Jamal, Muhammad Hasan; Fatima, Tayyaba; Martínez Espinosa, Julio César; Dzul López, Luis Alonso; Bautista Thompson, Ernesto y Ashraf, Imran
mail
SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, ulio.martinez@unini.edu.mx, luis.dzul@uneatlantico.es, ernesto.bautista@unini.edu.mx, SIN ESPECIFICAR
(2023)
Contextual Urdu Lemmatization Using Recurrent Neural Network Models.
Mathematics, 11 (2).
p. 435.
ISSN 2227-7390
Artículo
Materias > Ingeniería
Universidad Europea del Atlántico > Investigación > Producción Científica
Fundación Universitaria Internacional de Colombia > Investigación > Artículos y libros
Universidad Internacional Iberoamericana México > Investigación > Producción Científica
Universidad Internacional Iberoamericana Puerto Rico > Investigación > Producción Científica
Universidad Internacional do Cuanza > Investigación > Producción Científica
Abierto
Inglés
Automated dental imaging interpretation is one of the most prolific areas of research using artificial intelligence. X-ray imaging systems have enabled dental clinicians to identify dental diseases. However, the manual process of dental disease assessment is tedious and error-prone when diagnosed by inexperienced dentists. Thus, researchers have employed different advanced computer vision techniques, as well as machine and deep learning models for dental disease diagnoses using X-ray imagery. In this regard, a lightweight Mask-RCNN model is proposed for periapical disease detection. The proposed model is constructed in two parts: a lightweight modified MobileNet-v2 backbone and region-based network (RPN) are proposed for periapical disease localization on a small dataset. To measure the effectiveness of the proposed model, the lightweight Mask-RCNN is evaluated on a custom annotated dataset comprising images of five different types of periapical lesions. The results reveal that the model can detect and localize periapical lesions with an overall accuracy of 94%, a mean average precision of 85%, and a mean insection over a union of 71.0%. The proposed model improves the detection, classification, and localization accuracy significantly using a smaller number of images compared to existing methods and outperforms state-of-the-art approaches
metadata
Fatima, Anum; Shafi, Imran; Afzal, Hammad; Mahmood, Khawar; Díez, Isabel de la Torre; Lipari, Vivian; Brito Ballester, Julién y Ashraf, Imran
mail
SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, vivian.lipari@uneatlantico.es, julien.brito@uneatlantico.es, SIN ESPECIFICAR
(2023)
Deep Learning-Based Multiclass Instance Segmentation for Dental Lesion Detection.
Healthcare, 11 (3).
p. 347.
ISSN 2227-9032
Artículo
Materias > Ingeniería
Universidad Europea del Atlántico > Investigación > Producción Científica
Fundación Universitaria Internacional de Colombia > Investigación > Artículos y libros
Universidad Internacional Iberoamericana México > Investigación > Producción Científica
Universidad Internacional Iberoamericana Puerto Rico > Investigación > Producción Científica
Universidad Internacional do Cuanza > Investigación > Producción Científica
Abierto
Inglés
Monitoring tool conditions and sub-assemblies before final integration is essential to reducing processing failures and improving production quality for manufacturing setups. This research study proposes a real-time deep learning-based framework for identifying faulty components due to malfunctioning at different manufacturing stages in the aerospace industry. It uses a convolutional neural network (CNN) to recognize and classify intermediate abnormal states in a single manufacturing process. The manufacturing process for aircraft factory products comprises different phases; analyzing the components after the integration is labor-intensive and time-consuming, which often puts the company’s stake at high risk. To overcome these challenges, the proposed AI-based system can perform inspection and defect detection and alleviate the probability of components’ needing to be re-manufacturing after being assembled. In addition, it analyses the impact value, i.e., rework delays and costs, of manufacturing processes using a statistical process control tool on real-time data for various manufactured components. Defects are detected and classified using the CNN and teachable machine in the single manufacturing process during the initial stage prior to assembling the components. The results show the significance of the proposed approach in improving operational cost management and reducing rework-induced delays. Ground tests are conducted to calculate the impact value followed by the air tests of the final assembled aircraft. The statistical results indicate a 52.88% and 34.32% reduction in time delays and total cost, respectively.
metadata
Shafi, Imran; Mazhar, Muhammad Fawad; Fatima, Anum; Álvarez, Roberto Marcelo; Miró Vera, Yini Airet; Martínez Espinosa, Julio César y Ashraf, Imran
mail
SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, roberto.alvarez@uneatlantico.es, yini.miro@uneatlantico.es, ulio.martinez@unini.edu.mx, SIN ESPECIFICAR
(2023)
Deep Learning-Based Real Time Defect Detection for Optimization of Aircraft Manufacturing and Control Performance.
Drones, 7 (1).
p. 31.
ISSN 2504-446X
Artículo
Materias > Ingeniería
Universidad Europea del Atlántico > Investigación > Producción Científica
Fundación Universitaria Internacional de Colombia > Investigación > Artículos y libros
Universidad Internacional Iberoamericana México > Investigación > Producción Científica
Universidad Internacional Iberoamericana Puerto Rico > Investigación > Producción Científica
Cerrado
Inglés
Given that it provides nourishment for more than half of humanity, rice is regarded as one of the most significant plants in the world in agriculture. The quantity and quality of the product may be impacted by diseases that can damage rice plants which can occasionally cause crop losses ranging from 30 to 60%. This manuscript proposed a Convolutional Neural Network (CNN) and Visual Geometry Group (VGG)19 i.e. CNN-VGG19 model with a transfer learning-based method for the precise identification and classification of rice leaf diseases. This scheme employs a transfer learning technique based on the VGG19 which can identify the brown spot class. The accuracy is 93.0% in the deployment of the dataset of rice leaf disease. The other parameters are sensitivity, specificity, precision and F1-score with 89.9%, 94.7%, 92.4% and 90.5% respectively. The developed technique obtained better results as compared to the existing baseline models.
metadata
Dogra, Roopali; Rani, Shalli; Singh, Aman; Albahar, Marwan Ali; Pascual Barrera, Alina Eugenia y Alkhayyat, Ahmed
mail
SIN ESPECIFICAR, SIN ESPECIFICAR, aman.singh@uneatlantico.es, SIN ESPECIFICAR, alina.pascual@unini.edu.mx, SIN ESPECIFICAR
(2023)
Deep learning model for detection of brown spot rice leaf disease with smart agriculture.
Computers and Electrical Engineering, 109.
p. 108659.
ISSN 00457906
Artículo
Materias > Ingeniería
Universidad Europea del Atlántico > Investigación > Producción Científica
Fundación Universitaria Internacional de Colombia > Investigación > Artículos y libros
Universidad Internacional Iberoamericana México > Investigación > Producción Científica
Universidad Internacional Iberoamericana Puerto Rico > Investigación > Producción Científica
Universidad Internacional do Cuanza > Investigación > Producción Científica
Abierto
Inglés
Traffic accidents present significant risks to human life, leading to a high number of fatalities and injuries. According to the World Health Organization’s 2022 worldwide status report on road safety, there were 27,582 deaths linked to traffic-related events, including 4448 fatalities at the collision scenes. Drunk driving is one of the leading causes contributing to the rising count of deadly accidents. Current methods to assess driver alcohol consumption are vulnerable to network risks, such as data corruption, identity theft, and man-in-the-middle attacks. In addition, these systems are subject to security restrictions that have been largely overlooked in earlier research focused on driver information. This study intends to develop a platform that combines the Internet of Things (IoT) with blockchain technology in order to address these concerns and improve the security of user data. In this work, we present a device- and blockchain-based dashboard solution for a centralized police monitoring account. The equipment is responsible for determining the driver’s impairment level by monitoring the driver’s blood alcohol concentration (BAC) and the stability of the vehicle. At predetermined times, integrated blockchain transactions are executed, transmitting data straight to the central police account. This eliminates the need for a central server, ensuring the immutability of data and the existence of blockchain transactions that are independent of any central authority. Our system delivers scalability, compatibility, and faster execution times by adopting this approach. Through comparative research, we have identified a significant increase in the need for security measures in relevant scenarios, highlighting the importance of our suggested model.
metadata
Farooq, Hamza; Altaf, Ayesha; Iqbal, Faiza; Castanedo Galán, Juan; Gavilanes Aray, Daniel y Ashraf, Imran
mail
SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, juan.castanedo@uneatlantico.es, daniel.gavilanes@uneatlantico.es, SIN ESPECIFICAR
(2023)
DrunkChain: Blockchain-Based IoT System for Preventing Drunk Driving-Related Traffic Accidents.
Sensors, 23 (12).
p. 5388.
ISSN 1424-8220
Artículo
Materias > Ingeniería
Universidad Europea del Atlántico > Investigación > Producción Científica
Fundación Universitaria Internacional de Colombia > Investigación > Artículos y libros
Universidad Internacional Iberoamericana México > Investigación > Producción Científica
Universidad Internacional Iberoamericana Puerto Rico > Investigación > Producción Científica
Universidad Internacional do Cuanza > Investigación > Producción Científica
Abierto
Inglés
Cricket has a massive global following and is ranked as the second most popular sport globally, with an estimated 2.5 billion fans. Batting requires quick decisions based on ball speed, trajectory, fielder positions, etc. Recently, computer vision and machine learning techniques have gained attention as potential tools to predict cricket strokes played by batters. This study presents a cutting-edge approach to predicting batsman strokes using computer vision and machine learning. The study analyzes eight strokes: pull, cut, cover drive, straight drive, backfoot punch, on drive, flick, and sweep. The study uses the MediaPipe library to extract features from videos and several machine learning and deep learning algorithms, including random forest (RF), support vector machine, k-nearest neighbors, decision tree, linear regression, and long short-term memory to predict the strokes. The study achieves an outstanding accuracy of 99.77% using the RF algorithm, outperforming the other algorithms used in the study. The k-fold validation of the RF model is 95.0% with a standard deviation of 0.07, highlighting the potential of computer vision and machine learning techniques for predicting batsman strokes in cricket. The study’s results could help improve coaching techniques and enhance batsmen’s performance in cricket, ultimately improving the game’s overall quality.
metadata
Siddiqui, Hafeez Ur Rehman; Younas, Faizan; Rustam, Furqan; Soriano Flores, Emmanuel; Brito Ballester, Julién; Diez, Isabel de la Torre; Dudley, Sandra y Ashraf, Imran
mail
SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, emmanuel.soriano@uneatlantico.es, julien.brito@uneatlantico.es, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR
(2023)
Enhancing Cricket Performance Analysis with Human Pose Estimation and Machine Learning.
Sensors, 23 (15).
p. 6839.
ISSN 1424-8220
Artículo
Materias > Ingeniería
Universidad Europea del Atlántico > Investigación > Producción Científica
Fundación Universitaria Internacional de Colombia > Investigación > Artículos y libros
Universidad Internacional Iberoamericana México > Investigación > Producción Científica
Universidad Internacional Iberoamericana Puerto Rico > Investigación > Producción Científica
Universidad Internacional do Cuanza > Investigación > Producción Científica
Abierto
Inglés
Classification is a commonly used technique in data mining and is applied in various fields such as sentiment analysis, fraud detection, and fault diagnosis. Multiclass classification, which involves more than two classes, is more complex than binary classification. There are mainly two ways to approach multiclass classification, one is to expand the binary classifier into a multiclass classifier through various strategies and the other is to divide the multiclass classification problem into multiple binary problems (binarization). Two popular approaches for binarization are One vs One (OvO) and One vs All (OvA). It is simpler to aggregate the outputs of all binary classifiers as the number of classifiers decreases. However, it causes an imbalance of positive and negative sample numbers, which affects the classification effect of each binary classifier. In this article, we contribute to the field of ensemble learning and multi-class classification by proposing a new method called Ensemble Partition Sampling (EPS). This article presents a new approach to multiclass classification using an "Ensemble Partition Sampling" method within the "one-vs-all" (OvA) framework. The primary goal of this method is to tackle the problem of data imbalance by incorporating ensemble learning and preprocessing techniques into each binary dataset. The study found that Ensemble Partition Sampling (EPS) is the most effective method for imbalanced and multiclass imbalanced classification, outperforming other methods including OvA, SMOTE, k-means-SMOTE, Bagging-RB, DES-MI, OvO-EASY, and OvO-SMB. The study used CART, Random Forest, and SVM as classifiers, and the results consistently showed that EPS outperformed all other algorithms. The findings suggest that EPS is a highly effective method for improving classification performance in imbalanced and multiclass imbalanced datasets.
metadata
Jabir, Brahim; Díez, Isabel De la Torre; Bautista Thompson, Ernesto; Ramírez-Vargas, Debora L. y Kuc Castilla, Ángel Gabriel
mail
SIN ESPECIFICAR
(2023)
Ensemble Partition Sampling (EPS) for Improved Multi-Class Classification.
IEEE Access.
p. 1.
ISSN 2169-3536
Artículo
Materias > Ingeniería
Universidad Europea del Atlántico > Investigación > Producción Científica
Fundación Universitaria Internacional de Colombia > Investigación > Artículos y libros
Universidad Internacional Iberoamericana México > Investigación > Producción Científica
Universidad Internacional do Cuanza > Investigación > Producción Científica
Abierto
Inglés
A new artificial intelligence-based approach is proposed by developing a deep learning (DL) model for identifying the people who violate the face mask protocol in public places. To achieve this goal, a private dataset was created, including different face images with and without masks. The proposed model was trained to detect face masks from real-time surveillance videos. The proposed face mask detection (FMDNet) model achieved a promising detection of 99.0% in terms of accuracy for identifying violations (no face mask) in public places. The model presented a better detection capability compared to other recent DL models such as FSA-Net, MobileNet V2, and ResNet by 24.03%, 5.0%, and 24.10%, respectively. Meanwhile, the model is lightweight and had a confidence score of 99.0% in a resource-constrained environment. The model can perform the detection task in real-time environments at 41.72 frames per second (FPS). Thus, the developed model can be applicable and useful for governments to maintain the rules of the SOP protocol.
metadata
Benifa, J. V. Bibal; Chola, Channabasava; Muaad, Abdullah Y.; Hayat, Mohd Ammar Bin; Bin Heyat, Md Belal; Mehrotra, Rajat; Akhtar, Faijan; Hussein, Hany S.; Ramírez-Vargas, Debora L.; Kuc Castilla, Ángel Gabriel; Díez, Isabel de la Torre y Khan, Salabat
mail
SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, debora.ramirez@unini.edu.mx, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR
(2023)
FMDNet: An Efficient System for Face Mask Detection Based on Lightweight Model during COVID-19 Pandemic in Public Areas.
Sensors, 23 (13).
p. 6090.
ISSN 1424-8220
Artículo
Materias > Ingeniería
Universidad Europea del Atlántico > Investigación > Producción Científica
Fundación Universitaria Internacional de Colombia > Investigación > Artículos y libros
Universidad Internacional Iberoamericana México > Investigación > Producción Científica
Universidad Internacional Iberoamericana Puerto Rico > Investigación > Producción Científica
Universidad Internacional do Cuanza > Investigación > Producción Científica
Abierto
Inglés
In the Internet of things (IoT), data packets are accumulated and disseminated across IoT devices without human intervention, therefore the privacy and security of sensitive data during transmission are crucial. For this purpose, multiple routing techniques exist to ensure security and privacy in IoT Systems. One such technique is the routing protocol for low power and lossy networks (RPL) which is an IPv6 protocol commonly used for routing in IoT systems. Formal modeling of an IoT system can validate the reliability, accuracy, and consistency of the system. This paper presents the formal modeling of RPL protocol and the analysis of its security schemes using colored Petri nets that applies formal validation and verification for both the secure and non-secure modes of RPL protocol. The proposed approach can also be useful for formal modeling-based verification of the security of the other communication protocols.
metadata
Balfaqih, Mohammed; Ahmad, Farooq; Chaudhry, Muhammad Tayyab; Jamal, Muhammad Hasan; Sohail, Muhammad Amar; Gavilanes Aray, Daniel; Masías Vergara, Manuel y Ashraf, Imran
mail
SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, daniel.gavilanes@uneatlantico.es, manuel.masias@uneatlantico.es, SIN ESPECIFICAR
(2023)
Formal modeling and analysis of security schemes of RPL protocol using colored Petri nets.
PLOS ONE, 18 (8).
e0285700.
ISSN 1932-6203
Artículo
Materias > Ingeniería
Universidad Europea del Atlántico > Investigación > Producción Científica
Fundación Universitaria Internacional de Colombia > Investigación > Artículos y libros
Universidad Internacional Iberoamericana México > Investigación > Producción Científica
Universidad Internacional Iberoamericana Puerto Rico > Investigación > Producción Científica
Universidad Internacional do Cuanza > Investigación > Producción Científica
Abierto
Inglés
With the advancement in information technology, digital data stealing and duplication have become easier. Over a trillion bytes of data are generated and shared on social media through the internet in a single day, and the authenticity of digital data is currently a major problem. Cryptography and image watermarking are domains that provide multiple security services, such as authenticity, integrity, and privacy. In this paper, a digital image watermarking technique is proposed that employs the least significant bit (LSB) and canny edge detection method. The proposed method provides better security services and it is computationally less expensive, which is the demand of today’s world. The major contribution of this method is to find suitable places for watermarking embedding and provides additional watermark security by scrambling the watermark image. A digital image is divided into non-overlapping blocks, and the gradient is calculated for each block. Then convolution masks are applied to find the gradient direction and magnitude, and non-maximum suppression is applied. Finally, LSB is used to embed the watermark in the hysteresis step. Furthermore, additional security is provided by scrambling the watermark signal using our chaotic substitution box. The proposed technique is more secure because of LSB’s high payload and watermark embedding feature after a canny edge detection filter. The canny edge gradient direction and magnitude find how many bits will be embedded. To test the performance of the proposed technique, several image processing, and geometrical attacks are performed. The proposed method shows high robustness to image processing and geometrical attacks
metadata
Faheem, Zaid Bin; Ishaq, Abid; Rustam, Furqan; de la Torre Díez, Isabel; Gavilanes, Daniel; Masías Vergara, Manuel y Ashraf, Imran
mail
SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, daniel.gavilanes@uneatlantico.es, manuel.masias@uneatlantico.es, SIN ESPECIFICAR
(2023)
Image Watermarking Using Least Significant Bit and Canny Edge Detection.
Sensors, 23 (3).
p. 1210.
ISSN 1424-8220
Artículo
Materias > Ingeniería
Universidad Internacional do Cuanza > Investigación > Producción Científica
Universidad Europea del Atlántico > Investigación > Producción Científica
Fundación Universitaria Internacional de Colombia > Investigación > Artículos y libros
Universidad Internacional Iberoamericana México > Investigación > Producción Científica
Universidad Internacional Iberoamericana Puerto Rico > Investigación > Producción Científica
Abierto
Inglés
This research paper aims to examine the impact of innovative HRM practices, including employee participation, performance appraisal, reward and compensation, recruitment and selection, and redeployment–retraining on firm performance. For this purpose, four different models are utilized to examine the impact of innovative HRM department practices on the performance of small and medium enterprises (SMEs) in a country. The dependent variable, firm performance, is proxified by different variables such as labor productivity, product innovation, process innovation, and marketing innovation. For empirical analysis, primary data are collected using a questionnaire. Estimation is conducted using ordinary least squares (OLS) and logit regression techniques. The estimated results indicate that most innovative HRM practices have a statistically significant impact on firm performance in terms of labor productivity, product, process, and marketing innovations. These results imply that SMEs in a country may observe the benefits of devoting greater attention to innovative HRM practices to achieve their future growth potential.
metadata
Aslam, Mahvish; Shafi, Imran; Ahmed, Jamil; Garat de Marin, Mirtha Silvana; Soriano Flores, Emmanuel; Rojo Gutiérrez, Marco Antonio y Ashraf, Imran
mail
SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, silvana.marin@uneatlantico.es, emmanuel.soriano@uneatlantico.es, marco.rojo@unini.edu.mx, SIN ESPECIFICAR
(2023)
Impact of Innovation-Oriented Human Resource on Small and Medium Enterprises’ Performance.
Sustainability, 15 (7).
p. 6273.
ISSN 2071-1050
Artículo
Materias > Ingeniería
Universidad Europea del Atlántico > Investigación > Producción Científica
Fundación Universitaria Internacional de Colombia > Investigación > Artículos y libros
Universidad Internacional Iberoamericana México > Investigación > Producción Científica
Universidad Internacional Iberoamericana Puerto Rico > Investigación > Producción Científica
Universidad Internacional do Cuanza > Investigación > Producción Científica
Abierto
Inglés
An Internet of Things (IoT) network is prone to many ways of threatening individuals. IoT sensors are lightweight, lack complicated security protocols, and face threats to privacy and confidentiality. Hackers can attack the IoT network and access personal information and confidential data for blackmailing, and negatively manipulate data. This study aims to propose an IoT threat protection system (IoTTPS) to protect the IoT network from threats using an ensemble model RKSVM, comprising a random forest (RF), K nearest neighbor (KNN), and support vector machine (SVM) model. The software-defined networks (SDN)-based IoT network datasets such as KDD cup 99, NSL-KDD, and CICIDS are used for threat detection based on machine learning. The experimental phase is conducted by using a decision tree (DT), logistic regression (LR), Naive Bayes (NB), RF, SVM, gradient boosting machine (GBM), KNN, and the proposed ensemble RKSVM model. Furthermore, performance is optimized by adding a grid search hyperparameter optimization technique with K-Fold cross-validation. As well as the NSL-KDD dataset, two other datasets, KDD and CIC-IDS 2017, are used to validate the performance. Classification accuracies of 99.7%, 99.3%, 99.7%, and 97.8% are obtained for DoS, Probe, U2R, and R2L attacks using the proposed ensemble RKSVM model using grid search and cross-fold validation. Experimental results demonstrate the superior performance of the proposed model for IoT threat detection.
metadata
Akram, Urooj; Sharif, Wareesa; Shahroz, Mobeen; Mushtaq, Muhammad Faheem; Gavilanes Aray, Daniel; Bautista Thompson, Ernesto; Diez, Isabel de la Torre; Djuraev, Sirojiddin y Ashraf, Imran
mail
SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, daniel.gavilanes@uneatlantico.es, ernesto.bautista@unini.edu.mx, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR
(2023)
IoTTPS: Ensemble RKSVM Model-Based Internet of Things Threat Protection System.
Sensors, 23 (14).
p. 6379.
ISSN 1424-8220
Artículo
Materias > Ingeniería
Universidad Europea del Atlántico > Investigación > Producción Científica
Fundación Universitaria Internacional de Colombia > Investigación > Artículos y libros
Universidad Internacional Iberoamericana México > Investigación > Producción Científica
Abierto
Inglés
The integration of a flexible alternating current transmission system (FACTS) and a power system stabilizer (PSS) can increase dynamic stability. This paper presents the enhancement of power system dynamic stability through the optimal design of a power system stabilizer and UPFC using an ant lion optimization (ALO) technique to enhance transmission line capacity. The gained damping ratio, eigenvalue and time domain results of the suggested ALO technique were compared with a base case system, ALO-based PSS and ALO-based PSS-UPFC to test the effectiveness of the proposed system in different loading cases. Eigenvalues gained from an ant lion approach-based UPFC with a PSS and a base case system are compared to examine the robustness of the ALO method for various loading conditions. Thus, this paper addresses the mechanism regarding the power system dynamic stability of transmission lines by integrating the optimal size of a PSS and UPFC into the power system. Therefore, the main contribution of this manuscript is the optimal coordination of a power system stabilizer, power oscillation damper and unified power flow using ant lion optimization for the mitigation of low-frequency oscillation.
metadata
Solomon, Endeshaw; Khan, Baseem; Boulkaibet, Ilyes; Neji, Bilel; Khezami, Nadhira; Ali, Ahmed; Mahela, Om Prakash y Pascual Barrera, Alina Eugenia
mail
SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, alina.pascual@unini.edu.mx
(2023)
Mitigating Low-Frequency Oscillations and Enhancing the Dynamic Stability of Power System Using Optimal Coordination of Power System Stabilizer and Unified Power Flow Controller.
Sustainability, 15 (8).
p. 6980.
ISSN 2071-1050
Artículo
Materias > Ingeniería
Universidad Europea del Atlántico > Investigación > Producción Científica
Fundación Universitaria Internacional de Colombia > Investigación > Artículos y libros
Universidad Internacional Iberoamericana México > Investigación > Producción Científica
Universidad Internacional Iberoamericana Puerto Rico > Investigación > Producción Científica
Universidad Internacional do Cuanza > Investigación > Producción Científica
Abierto
Inglés
The rising popularity of online shopping has led to a steady stream of new product evaluations. Consumers benefit from these evaluations as they make purchasing decisions. Many research projects rank products using these reviews, however, most of these methodologies have ignored negative polarity while evaluating products for client needs. The main contribution of this research is the inclusion of negative polarity in the analysis of product rankings alongside positive polarity. To account for reviews that contain many sentiments and different elements, the suggested method first breaks them down into sentences. This process aids in determining the polarity of products at the phrase level by extracting elements from product evaluations. The next step is to link the polarity to the review’s sentence-level features. Products are prioritized following user needs by assigning relative importance to each of the polarities. The Amazon review dataset has been used in the experimental assessments so that the efficacy of the suggested approach can be estimated. Experimental evaluation of PRUS utilizes rank score ( RS ) and normalized discounted cumulative gain ( nDCG ) score. Results indicate that PRUS gives independence to the user to select recommended list based on specific features with respect to positive or negative aspects of the products.
metadata
Hussain, Naveed; Mirza, Hamid Turab; Iqbal, Faiza; Altaf, Ayesha; Shoukat, Ahtsham; Gracia Villar, Mónica; Soriano Flores, Emmanuel; Rojo Gutiérrez, Marco Antonio y Ashraf, Imran
mail
SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, monica.gracia@uneatlantico.es, emmanuel.soriano@uneatlantico.es, marco.rojo@unini.edu.mx, SIN ESPECIFICAR
(2023)
PRUS: Product Recommender System Based on User Specifications and Customers Reviews.
IEEE Access, 11.
pp. 81289-81297.
ISSN 2169-3536
Artículo
Materias > Ingeniería
Universidad Europea del Atlántico > Investigación > Producción Científica
Fundación Universitaria Internacional de Colombia > Investigación > Artículos y libros
Universidad Internacional Iberoamericana México > Investigación > Producción Científica
Universidad Internacional Iberoamericana Puerto Rico > Investigación > Producción Científica
Universidad Internacional do Cuanza > Investigación > Producción Científica
Abierto
Inglés
Railway track faults may lead to railway accidents and cause human and financial loss. Spatial, temporal, and weather elements, and wear and tear, lead to ballast, loose nuts, misalignment, and cracks leading to accidents. Manual inspection of such defects is time-consuming and prone to errors. Automatic inspection provides a fast, reliable, and unbiased solution. However, highly accurate fault detection is challenging due to the lack of public datasets, noisy data, inefficient models, etc. To obtain better performance, this study presents a novel approach that relies on mel frequency cepstral coefficient features from acoustic data. The primary objective of this study is to increase fault detection performance. As well as designing an ensemble model, we utilize selective features using chi-square(chi2) that have high importance with respect to the target class. Extensive experiments were carried out to analyze the efficiency of the proposed approach. The experimental results suggest that using 60 features, 40 original features, and 20 chi2 features produces optimal results both regarding accuracy and computational complexity. A mean accuracy score of 0.99 was obtained using the proposed approach with machine learning models using the collected data. Moreover, this performance was significantly better than that of existing approaches; however, the performance of models may vary in real-world settings.
metadata
Rustam, Furqan; Ishaq, Abid; Hashmi, Muhammad Shadab Alam; Siddiqui, Hafeez Ur Rehman; Dzul Lopez, Luis; Castanedo Galán, Juan y Ashraf, Imran
mail
SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, luis.dzul@unini.edu.mx, juan.castanedo@uneatlantico.es, SIN ESPECIFICAR
(2023)
Railway Track Fault Detection Using Selective MFCC Features from Acoustic Data.
Sensors, 23 (16).
p. 7018.
ISSN 1424-8220
Artículo
Materias > Ingeniería
Universidad Europea del Atlántico > Investigación > Producción Científica
Fundación Universitaria Internacional de Colombia > Investigación > Artículos y libros
Universidad Internacional Iberoamericana México > Investigación > Producción Científica
Universidad Internacional Iberoamericana Puerto Rico > Investigación > Producción Científica
Universidad Internacional do Cuanza > Investigación > Producción Científica
Abierto
Inglés
Non-word and real-word errors are generally two types of spelling errors. Non-word errors are misspelled words that are nonexistent in the lexicon while real-word errors are misspelled words that exist in the lexicon but are used out of context in a sentence. Lexicon-based lookup approach is widely used for non-word errors but it is incapable of handling real-word errors as they require contextual information. Contrary to the English language, real-word error detection and correction for low-resourced languages like Urdu is an unexplored area. This paper presents a real-word spelling error detection and correction approach for the Urdu language. We develop an extensive lexicon of 593,738 words and use this lexicon to develop a dataset for real-word errors comprising 125562 sentences and 2,552,735 words. Based on the developed lexicon and dataset, we then develop a contextual spell checker that detects and corrects real-word errors. For the real-word error detection phase, word-gram features are used along with five machine learning classifiers, achieving a precision, recall, and F1-score of 0.84,0.79, and 0.81 respectively. We also test the proposed approach with a 40% error density. For real-word error correction, the Damerau-Levenshtein distance is used along with the n-gram model for further ranking of the suggested candidate words, achieving an accuracy of up to 83.67%.
metadata
Aziz, Romila; Anwar, Muhammad Waqas; Jamal, Muhammad Hasan; Bajwa, Usama Ijaz; Kuc Castilla, Ángel Gabriel; Uc-Rios, Carlos; Bautista Thompson, Ernesto y Ashraf, Imran
mail
SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, carlos.uc@unini.edu.mx, ernesto.bautista@unini.edu.mx, SIN ESPECIFICAR
(2023)
Real Word Spelling Error Detection and Correction for Urdu Language.
IEEE Access.
p. 1.
ISSN 2169-3536
Artículo
Materias > Ingeniería
Universidad Europea del Atlántico > Investigación > Producción Científica
Fundación Universitaria Internacional de Colombia > Investigación > Artículos y libros
Universidad Internacional Iberoamericana México > Investigación > Producción Científica
Universidad Internacional Iberoamericana Puerto Rico > Investigación > Producción Científica
Universidad Internacional do Cuanza > Investigación > Producción Científica
Abierto
Inglés
The rapid generation of data from various sources by the public sector, private corporations, business associations, and local communities is referred to as big data. This large and complex dataset is often regarded as the ‘new oil’ by public administrations (PAs), and data-driven approaches are employed to transform it into valuable insights that can improve governance, transparency, digital services, and public engagement. The government’s big-data ecosystem (GBDE) is a result of this initiative. Effective data management is the first step towards large-scale data analysis, which yields insights that benefit your work and your customers. However, managing big data throughout its life cycle is a daunting challenge for public agencies. Despite its widespread use, big data management is still a significant obstacle. To address this issue, this study proposes a hybrid approach to secure the data management life cycle for GBDE. Specifically, we use a combination of the ECC algorithm with AES 128 BITS encryption to ensure that the data remain confidential and secure. We identified and analyzed various data life cycle models through a systematic literature review to create a data management life cycle for data-driven governments. This approach enhances the security and privacy of data management and addresses the challenges faced by public agencies.
metadata
Zahid, Reeba; Altaf, Ayesha; Ahmad, Tauqir; Iqbal, Faiza; Miró Vera, Yini Airet; López Flores, Miguel Ángel y Ashraf, Imran
mail
SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, yini.miro@uneatlantico.es, miguelangel.lopez@uneatlantico.es, SIN ESPECIFICAR
(2023)
Secure Data Management Life Cycle for Government Big-Data Ecosystem: Design and Development Perspective.
Systems, 11 (8).
p. 380.
ISSN 2079-8954
Artículo
Materias > Ingeniería
Universidad Europea del Atlántico > Investigación > Producción Científica
Fundación Universitaria Internacional de Colombia > Investigación > Artículos y libros
Universidad Internacional Iberoamericana México > Investigación > Producción Científica
Universidad Internacional Iberoamericana Puerto Rico > Investigación > Producción Científica
Universidad Internacional do Cuanza > Investigación > Producción Científica
Abierto
Inglés
Safety critical spare parts hold special importance for aviation organizations. However, accurate forecasting of such parts becomes challenging when the data are lumpy or intermittent. This research paper proposes an artificial neural network (ANN) model that is able to observe the recent trends of error surface and responds efficiently to the local gradient for precise spare prediction results marked by lumpiness. Introduction of the momentum term allows the proposed ANN model to ignore small variations in the error surface and to behave like a low-pass filter and thus to avoid local minima. Using the whole collection of aviation spare parts having the highest demand activity, an ANN model is built to predict the failure of aircraft installed parts. The proposed model is first optimized for its topology and is later trained and validated with known historical demand datasets. The testing phase includes introducing input vector comprising influential factors that dictate sporadic demand. The proposed approach is found to provide superior results due to its simple architecture and fast converging training algorithm once evaluated against some other state-of-the-art models from the literature using related benchmark performance criteria. The experimental results demonstrate the effectiveness of the proposed approach. The accurate prediction of the cost-heavy and critical spare parts is expected to result in huge cost savings, reduce downtime, and improve the operational readiness of drones, fixed wing aircraft and helicopters. This also resolves the dead inventory issue as a result of wrong demands of fast moving spares due to human error.
metadata
Shafi, Imran; Sohail, Amir; Ahmad, Jamil; Martínez Espinosa, Julio César; Dzul Lopez, Luis Alonso; Bautista Thompson, Ernesto y Ashraf, Imran
mail
SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, luis.dzul@unini.edu.mx, ernesto.bautista@unini.edu.mx, SIN ESPECIFICAR
(2023)
Spare Parts Forecasting and Lumpiness Classification Using Neural Network Model and Its Impact on Aviation Safety.
Applied Sciences, 13 (9).
p. 5475.
ISSN 2076-3417
Artículo
Materias > Ingeniería
Universidad Europea del Atlántico > Investigación > Producción Científica
Fundación Universitaria Internacional de Colombia > Investigación > Artículos y libros
Universidad Internacional Iberoamericana México > Investigación > Producción Científica
Universidad Internacional do Cuanza > Investigación > Producción Científica
Universidad de La Romana > Investigación > Producción Científica
Abierto
Inglés
Artificial intelligence (AI)-based models have emerged as powerful tools in financial markets, capable of reducing investment risks and aiding in selecting highly profitable stocks by achieving precise predictions. This holds immense value for investors, as it empowers them to make data-driven decisions. Identifying current and future trends in multi-class forecasting techniques employed within financial markets, particularly profitability analysis as an evaluation metric is important. The review focuses on examining stud-ies conducted between 2018 and 2023, sourced from three prominent academic databases. A meticulous three-stage approach was employed, encompassing the systematic planning, conduct, and analysis of the se-lected studies. Specifically, the analysis emphasizes technical assessment, profitability analysis, hybrid mod-eling, and the type of results generated by models. Articles were shortlisted based on inclusion and exclusion criteria, while a rigorous quality assessment through ten quality criteria questions, utilizing a Likert-type scale was employed to ensure methodological robustness. We observed that ensemble and hybrid models with long short-term memory (LSTM) and support vector machines (SVM) are being more adopted for financial trends and price prediction. Moreover, hybrid models employing AI algorithms for feature engineering have great potential at par with ensemble techniques. Most studies only employ performance metrics and lack utilization of profitability metrics or investment or trading strategy (simulated or real-time). Similarly, research on multi-class or output is severely lacking in financial forecasting and can be a good avenue for future research.
metadata
Khattak, Bilal Hassan Ahmed; Shafi, Imran; Khan, Abdul Saboor; Soriano Flores, Emmanuel; García Lara, Roberto; Samad, Md. Abdus y Ashraf, Imran
mail
SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, emmanuel.soriano@uneatlantico.es, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR
(2023)
A Systematic Survey of AI Models in Financial Market Forecasting for Profitability Analysis.
IEEE Access, 11.
pp. 125359-125380.
ISSN 2169-3536
Artículo
Materias > Ingeniería
Universidad Europea del Atlántico > Investigación > Producción Científica
Fundación Universitaria Internacional de Colombia > Investigación > Artículos y libros
Universidad Internacional Iberoamericana México > Investigación > Producción Científica
Universidad Internacional Iberoamericana Puerto Rico > Investigación > Producción Científica
Universidad Internacional do Cuanza > Investigación > Producción Científica
Abierto
Inglés
With a view of the post-COVID-19 world and probable future pandemics, this paper presents an Internet of Things (IoT)-based automated healthcare diagnosis model that employs a mixed approach using data augmentation, transfer learning, and deep learning techniques and does not require physical interaction between the patient and physician. Through a user-friendly graphic user interface and availability of suitable computing power on smart devices, the embedded artificial intelligence allows the proposed model to be effectively used by a layperson without the need for a dental expert by indicating any issues with the teeth and subsequent treatment options. The proposed method involves multiple processes, including data acquisition using IoT devices, data preprocessing, deep learning-based feature extraction, and classification through an unsupervised neural network. The dataset contains multiple periapical X-rays of five different types of lesions obtained through an IoT device mounted within the mouth guard. A pretrained AlexNet, a fast GPU implementation of a convolutional neural network (CNN), is fine-tuned using data augmentation and transfer learning and employed to extract the suitable feature set. The data augmentation avoids overtraining, whereas accuracy is improved by transfer learning. Later, support vector machine (SVM) and the K-nearest neighbors (KNN) classifiers are trained for lesion classification. It was found that the proposed automated model based on the AlexNet extraction mechanism followed by the SVM classifier achieved an accuracy of 98%, showing the effectiveness of the presented approach.
metadata
Shafi, Imran; Sajad, Muhammad; Fatima, Anum; Gavilanes Aray, Daniel; Lipari, Vivian; Diez, Isabel de la Torre y Ashraf, Imran
mail
SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, daniel.gavilanes@uneatlantico.es, vivian.lipari@uneatlantico.es, SIN ESPECIFICAR, SIN ESPECIFICAR
(2023)
Teeth Lesion Detection Using Deep Learning and the Internet of Things Post-COVID-19.
Sensors, 23 (15).
p. 6837.
ISSN 1424-8220
Artículo
Materias > Ingeniería
Universidad Europea del Atlántico > Investigación > Producción Científica
Fundación Universitaria Internacional de Colombia > Investigación > Artículos y libros
Universidad Internacional Iberoamericana México > Investigación > Producción Científica
Universidad Internacional Iberoamericana Puerto Rico > Investigación > Producción Científica
Universidad Internacional do Cuanza > Investigación > Producción Científica
Abierto
Inglés
Blockchain and machine learning (ML) has garnered growing interest as cutting-edge technologies that have witnessed tremendous strides in their respective domains. Blockchain technology provides a decentralized and immutable ledger, enabling secure and transparent transactions without intermediaries. Alternatively, ML is a sub-field of artificial intelligence (AI) that empowers systems to enhance their performance by learning from data. The integration of these data-driven paradigms holds the potential to reinforce data privacy and security, improve data analysis accuracy, and automate complex processes. The confluence of blockchain and ML has sparked increasing interest among scholars and researchers. Therefore, a bibliometric analysis is carried out to investigate the key focus areas, hotspots, potential prospects, and dynamical aspects of the field. This paper evaluates 700 manuscripts drawn from the Web of Science (WoS) core collection database, spanning from 2017 to 2022. The analysis is conducted using advanced bibliometric tools (e.g., Bibliometrix R, VOSviewer, and CiteSpace) to assess various aspects of the research area regarding publication productivity, influential articles, prolific authors, the productivity of academic countries and institutions, as well as the intellectual structure in terms of hot topics and emerging trends. The findings suggest that upcoming research should focus on blockchain technology, AI-powered 5G networks, industrial cyber-physical systems, IoT environments, and autonomous vehicles. This paper provides a valuable foundation for both academic scholars and practitioners as they contemplate future projects on the integration of blockchain and ML.
metadata
Akrami, Nouhaila El; Hanine, Mohamed; Flores, Emmanuel Soriano; Aray, Daniel Gavilanes y Ashraf, Imran
mail
SIN ESPECIFICAR
(2023)
Unleashing the Potential of Blockchain and Machine Learning: Insights and Emerging Trends From Bibliometric Analysis.
IEEE Access, 11.
pp. 78879-78903.
ISSN 2169-3536
Artículo
Materias > Biomedicina
Materias > Ingeniería
Universidad Europea del Atlántico > Investigación > Producción Científica
Fundación Universitaria Internacional de Colombia > Investigación > Artículos y libros
Universidad Internacional Iberoamericana México > Investigación > Producción Científica
Universidad Internacional Iberoamericana Puerto Rico > Investigación > Producción Científica
Universidad Internacional do Cuanza > Investigación > Producción Científica
Abierto
Inglés
This study sought to investigate how different brain regions are affected by Alzheimer’s disease (AD) at various phases of the disease, using independent component analysis (ICA). The study examines six regions in the mild cognitive impairment (MCI) stage, four in the early stage of Alzheimer’s disease (AD), six in the moderate stage, and six in the severe stage. The precuneus, cuneus, middle frontal gyri, calcarine cortex, superior medial frontal gyri, and superior frontal gyri were the areas impacted at all phases. A general linear model (GLM) is used to extract the voxels of the previously mentioned regions. The resting fMRI data for 18 AD patients who had advanced from MCI to stage 3 of the disease were obtained from the ADNI public source database. The subjects include eight women and ten men. The voxel dataset is used to train and test ten machine learning algorithms to categorize the MCI, mild, moderate, and severe stages of Alzheimer’s disease. The accuracy, recall, precision, and F1 score were used as conventional scoring measures to evaluate the classification outcomes. AdaBoost fared better than the other algorithms and obtained a phenomenal accuracy of 98.61%, precision of 99.00%, and recall and F1 scores of 98.00% each.
metadata
Shahzadi, Samra; Butt, Naveed Anwer; Sana, Muhammad Usman; Elío Pascual, Iñaki; Briones Urbano, Mercedes; Díez, Isabel de la Torre y Ashraf, Imran
mail
SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, inaki.elio@uneatlantico.es, mercedes.briones@uneatlantico.es, SIN ESPECIFICAR, SIN ESPECIFICAR
(2023)
Voxel Extraction and Multiclass Classification of Identified Brain Regions across Various Stages of Alzheimer’s Disease Using Machine Learning Approaches.
Diagnostics, 13 (18).
p. 2871.
ISSN 2075-4418
Artículo
Materias > Biomedicina
Materias > Ingeniería
Universidad Europea del Atlántico > Investigación > Producción Científica
Fundación Universitaria Internacional de Colombia > Investigación > Artículos y libros
Universidad Internacional Iberoamericana México > Investigación > Producción Científica
Universidad Internacional Iberoamericana Puerto Rico > Investigación > Producción Científica
Universidad Internacional do Cuanza > Investigación > Producción Científica
Abierto
Inglés
Objective
This study aims to develop a lightweight convolutional neural network-based edge federated learning architecture for COVID-19 detection using X-ray images, aiming to minimize computational cost, latency, and bandwidth requirements while preserving patient privacy.
Method
The proposed method uses an edge federated learning architecture to optimize task allocation and execution. Unlike in traditional edge networks where requests from fixed nodes are handled by nearby edge devices or remote clouds, the proposed model uses an intelligent broker within the federation to assess member edge cloudlets' parameters, such as resources and hop count, to make optimal decisions for task offloading. This approach enhances performance and privacy by placing tasks in closer proximity to the user. DenseNet is used for model training, with a depth of 60 and 357,482 parameters. This resource-aware distributed approach optimizes computing resource utilization within the edge-federated learning architecture.
Results
The experimental results demonstrate significant improvements in various performance metrics. The proposed method reduces training time by 53.1%, optimizes CPU and memory utilization by 17.5% and 33.6%, and maintains accurate COVID-19 detection capabilities without compromising the F1 score, demonstrating the efficiency and effectiveness of the lightweight convolutional neural network-based edge federated learning architecture.
Conclusion
Existing studies predominantly concentrate on either privacy and accuracy or load balancing and energy optimization, with limited emphasis on training time. The proposed approach offers a comprehensive performance-centric solution that simultaneously addresses privacy, load balancing, and energy optimization while reducing training time, providing a more holistic and balanced solution for optimal system performance.
metadata
Alvi, Sohaib Bin Khalid; Nayyer, Muhammad Ziad; Jamal, Muhammad Hasan; Raza, Imran; de la Torre Diez, Isabel; Rodríguez Velasco, Carmen Lilí; Breñosa, Jose y Ashraf, Imran
mail
SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, carmen.rodriguez@uneatlantico.es, josemanuel.brenosa@uneatlantico.es, SIN ESPECIFICAR
(2023)
A lightweight deep learning approach for COVID-19 detection using X-ray images with edge federation.
DIGITAL HEALTH, 9.
ISSN 2055-2076
2022
Artículo
Materias > Biomedicina
Materias > Ingeniería
Universidad Europea del Atlántico > Investigación > Producción Científica
Fundación Universitaria Internacional de Colombia > Investigación > Artículos y libros
Universidad Internacional Iberoamericana México > Investigación > Producción Científica
Universidad Internacional Iberoamericana Puerto Rico > Investigación > Producción Científica
Universidad Internacional do Cuanza > Investigación > Producción Científica
Abierto
Inglés
Artificial intelligence has been widely used in the field of dentistry in recent years. The present study highlights current advances and limitations in integrating artificial intelligence, machine learning, and deep learning in subfields of dentistry including periodontology, endodontics, orthodontics, restorative dentistry, and oral pathology. This article aims to provide a systematic review of current clinical applications of artificial intelligence within different fields of dentistry. The preferred reporting items for systematic reviews (PRISMA) statement was used as a formal guideline for data collection. Data was obtained from research studies for 2009–2022. The analysis included a total of 55 papers from Google Scholar, IEEE, PubMed, and Scopus databases. Results show that artificial intelligence has the potential to improve dental care, disease diagnosis and prognosis, treatment planning, and risk assessment. Finally, this study highlights the limitations of the analyzed studies and provides future directions to improve dental care
metadata
Fatima, Anum; Shafi, Imran; Afzal, Hammad; Díez, Isabel De La Torre; Lourdes, Del Rio-Solá M.; Breñosa, Jose; Martínez Espinosa, Julio César y Ashraf, Imran
mail
SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, josemanuel.brenosa@uneatlantico.es, ulio.martinez@unini.edu.mx, SIN ESPECIFICAR
(2022)
Advancements in Dentistry with Artificial Intelligence: Current Clinical Applications and Future Perspectives.
Healthcare, 10 (11).
p. 2188.
ISSN 2227-9032
Artículo
Materias > Ingeniería
Universidad Europea del Atlántico > Investigación > Producción Científica
Fundación Universitaria Internacional de Colombia > Investigación > Artículos y libros
Universidad Internacional Iberoamericana México > Investigación > Producción Científica
Universidad Internacional Iberoamericana Puerto Rico > Investigación > Producción Científica
Universidad Internacional do Cuanza > Investigación > Producción Científica
Abierto
Inglés
The fast expansion of ICT (information and communications technology) has provided rich sources of data for the analysis, modeling, and interpretation of human mobility patterns. Many researchers have already introduced behavior-aware protocols for a better understanding of architecture and realistic modeling of behavioral characteristics, similarities, and aggregation of mobile users. We are introducing the similarity analytical framework for the mobile encountering analysis to allow for more direct integration between the physical world and cyber-based systems. In this research, we propose a method for finding the similarity behavior of users’ mobility patterns based on location and time. This research was conducted to develop a technique for producing co-occurrence matrices of users based on their similar behaviors to determine their encounters. Our approach, named SAA (similarity analysis approach), makes use of the device info i.e., IP (internet protocol) and MAC (media access control) address, providing an in-depth analysis of similarity behaviors on a daily basis. We analyzed the similarity distributions of users on different days of the week for different locations based on their real movements. The results show similar characteristics of users with common mobility behaviors based on location and time to showcase the efficacy. The results show that the proposed SAA approach is 33% more accurate in terms of recognizing the user’s similarity as compared to the existing similarity approach.
metadata
Memon, Ambreen; Kilby, Jeff; Breñosa, Jose; Martínez Espinosa, Julio César y Ashraf, Imran
mail
SIN ESPECIFICAR, SIN ESPECIFICAR, josemanuel.brenosa@uneatlantico.es, ulio.martinez@unini.edu.mx, SIN ESPECIFICAR
(2022)
Analysis and Implementation of Human Mobility Behavior Using Similarity Analysis Based on Co-Occurrence Matrix.
Sensors, 22 (24).
p. 9898.
ISSN 1424-8220
Artículo
Materias > Ciencias Sociales
Materias > Ingeniería
Universidad Europea del Atlántico > Investigación > Producción Científica
Fundación Universitaria Internacional de Colombia > Investigación > Artículos y libros
Universidad Internacional Iberoamericana México > Investigación > Producción Científica
Universidad Internacional Iberoamericana Puerto Rico > Investigación > Producción Científica
Universidad Internacional do Cuanza > Investigación > Producción Científica
Abierto
Inglés
Innovation plays a pivotal role in the progress and goodwill of an organization, and its ability to thrive. Consequently, the impact analysis of innovation on the performance of an organization holds great importance. This paper presents a two-stage analytical framework to examine the impact of business innovation on a firm’s performance, especially firms from the manufacturing sector. The prime objective is to identify the factors that have an impact on firm-level innovation, and to examine the impact of firm-level innovation on business performance. The framework and its analysis are based on the latest World Bank enterprise survey, with a sample size of 696 manufacturing firms. The first stage of the proposed framework establishes the analytical results through Bivariate Probit, which indicates that research and development (R&D) has a significantly positive impact on the product, process, marketing, and organizational innovations. It thus highlights the important role of the allocation of lump-sum amounts for R&D activities. The statistical analysis shows that innovation does not depend on the size of the firms. Moreover, the older firms are found to be wiser at conducting R&D than newer firms that are reluctant to take risks. The second stage of the proposed framework separately analyzes the impacts of the product and organizational innovation, and the process and marketing innovation on the firm performance, and finds them to be statistically significant and insignificant, respectively.
metadata
Aslam, Mahrukh; Shafi, Imran; Ahmad, Jamil; Álvarez, Roberto Marcelo; Miró Vera, Yini Airet; Soriano Flores, Emmanuel y Ashraf, Imran
mail
SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, roberto.alvarez@uneatlantico.es, yini.miro@uneatlantico.es, emmanuel.soriano@uneatlantico.es, SIN ESPECIFICAR
(2022)
An Analytical Framework for Innovation Determinants and Their Impact on Business Performance.
Sustainability, 15 (1).
p. 458.
ISSN 2071-1050
Artículo
Materias > Ingeniería
Universidad Europea del Atlántico > Investigación > Producción Científica
Fundación Universitaria Internacional de Colombia > Investigación > Artículos y libros
Universidad Internacional Iberoamericana México > Investigación > Producción Científica
Universidad Internacional Iberoamericana Puerto Rico > Investigación > Producción Científica
Universidad Internacional do Cuanza > Investigación > Producción Científica
Abierto
Inglés
The demand for cloud computing has drastically increased recently, but this paradigm has several issues due to its inherent complications, such as non-reliability, latency, lesser mobility support, and location-aware services. Fog computing can resolve these issues to some extent, yet it is still in its infancy. Despite several existing works, these works lack fault-tolerant fog computing, which necessitates further research. Fault tolerance enables the performing and provisioning of services despite failures and maintains anti-fragility and resiliency. Fog computing is highly diverse in terms of failures as compared to cloud computing and requires wide research and investigation. From this perspective, this study primarily focuses on the provision of uninterrupted services through fog computing. A framework has been designed to provide uninterrupted services while maintaining resiliency. The geographical information system (GIS) services have been deployed as a test bed which requires high computation, requires intensive resources in terms of CPU and memory, and requires low latency. Keeping different types of failures at different levels and their impacts on service failure and greater response time in mind, the framework was made anti-fragile and resilient at different levels. Experimental results indicate that during service interruption, the user state remains unaffected.
metadata
Mir, Tahira Sarwar; Liaqat, Hannan Bin; Kiren, Tayybah; Sana, Muhammad Usman; Álvarez, Roberto Marcelo; Miró Vera, Yini Airet; Pascual Barrera, Alina Eugenia y Ashraf, Imran
mail
SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, roberto.alvarez@uneatlantico.es, yini.miro@uneatlantico.es, alina.pascual@unini.edu.mx, SIN ESPECIFICAR
(2022)
Antifragile and Resilient Geographical Information System Service Delivery in Fog Computing.
Sensors, 22 (22).
p. 8778.
ISSN 1424-8220
Artículo
Materias > Biomedicina
Materias > Ingeniería
Universidad Europea del Atlántico > Investigación > Producción Científica
Fundación Universitaria Internacional de Colombia > Investigación > Artículos y libros
Universidad Internacional Iberoamericana México > Investigación > Producción Científica
Universidad Internacional Iberoamericana Puerto Rico > Investigación > Producción Científica
Universidad Internacional do Cuanza > Investigación > Producción Científica
Abierto
Español
Patient care and convenience remain the concern of medical professionals and caregivers alike. An unconscious patient confined to a bed may develop fluid accumulation and pressure sores due to inactivity and deficiency of oxygen flow. Moreover, weight monitoring is crucial for an effective treatment plan, which is difficult to measure for bedridden patients. This paper presents the design and development of a smart and cost-effective independent system for lateral rotation, movement, weight measurement, and transporting immobile patients. Optimal dimensions and practical design specifications are determined by a survey across various hospitals. Subsequently, the proposed hoist-based weighing and turning mechanism is CAD-modeled and simulated. Later, the structural analysis is carried out to select suitable metallurgy for various sub-assemblies to ensure design reliability. After fabrication, optimization, integration, and testing procedures, the base frame is designed to mount a hydraulic motor for the actuator, a DC power source for self-sustenance, and lockable wheels for portability. The installation of a weighing scale and a hydraulic actuator is ensured to lift the patient for weight measuring up to 600 pounds or lateral turning of 80 degrees both ways. The developed system offers simple operating characteristics, allows for keeping patient weight records, and assists nurses in changing patients’ lateral positions both ways, comfortably massage patients’ backs, and transport them from one bed to another. Additionally, being lightweight offers reduced contact with the patient to increase the healthcare staff’s safety in pandemics; it is also height adjustable and portable, allowing for use with multiple-sized beds and easy transportation across the medical facility. The feedback from paramedics is encouraging regarding reducing labor-intensive nursing tasks, alleviating the discomfort of long-term bed-ridden patients, and allowing medical practitioners to suggest better treatment plans
metadata
Shafi, Imran; Farooq, Muhammad Siddique; De La Torre Díez, Isabel; Breñosa, Jose; Martínez Espinosa, Julio César y Ashraf, Imran
mail
SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, josemanuel.brenosa@uneatlantico.es, ulio.martinez@unini.edu.mx, SIN ESPECIFICAR
(2022)
Design and Development of Smart Weight Measurement, Lateral Turning and Transfer Bedding for Unconscious Patients in Pandemics.
Healthcare, 10 (11).
p. 2174.
ISSN 2227-9032
Artículo
Materias > Biomedicina
Materias > Ingeniería
Universidad Europea del Atlántico > Investigación > Producción Científica
Fundación Universitaria Internacional de Colombia > Investigación > Artículos y libros
Universidad Internacional Iberoamericana México > Investigación > Producción Científica
Universidad Internacional Iberoamericana Puerto Rico > Investigación > Producción Científica
Universidad Internacional do Cuanza > Investigación > Producción Científica
Abierto
Inglés
The diagnosis of early-stage lung cancer is challenging due to its asymptomatic nature, especially given the repeated radiation exposure and high cost of computed tomography(CT). Examining the lung CT images to detect pulmonary nodules, especially the cell lung cancer lesions, is also tedious and prone to errors even by a specialist. This study proposes a cancer diagnostic model based on a deep learning-enabled support vector machine (SVM). The proposed computer-aided design (CAD) model identifies the physiological and pathological changes in the soft tissues of the cross-section in lung cancer lesions. The model is first trained to recognize lung cancer by measuring and comparing the selected profile values in CT images obtained from patients and control patients at their diagnosis. Then, the model is tested and validated using the CT scans of both patients and control patients that are not shown in the training phase. The study investigates 888 annotated CT scans from the publicly available LIDC/IDRI database. The proposed deep learning-assisted SVM-based model yields 94% accuracy for pulmonary nodule detection representing early-stage lung cancer. It is found superior to other existing methods including complex deep learning, simple machine learning, and the hybrid techniques used on lung CT images for nodule detection. Experimental results demonstrate that the proposed approach can greatly assist radiologists in detecting early lung cancer and facilitating the timely management of patients.
metadata
Shafi, Imran; Din, Sadia; Khan, Asim; Díez, Isabel De La Torre; Pali-Casanova, Ramón; Tutusaus, Kilian y Ashraf, Imran
mail
SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, ramon.pali@unini.edu.mx, kilian.tutusaus@uneatlantico.es, SIN ESPECIFICAR
(2022)
An Effective Method for Lung Cancer Diagnosis from CT Scan Using Deep Learning-Based Support Vector Network.
Cancers, 14 (21).
p. 5457.
ISSN 2072-6694
Artículo
Materias > Ingeniería
Universidad Europea del Atlántico > Investigación > Producción Científica
Fundación Universitaria Internacional de Colombia > Investigación > Artículos y libros
Universidad Internacional Iberoamericana México > Investigación > Producción Científica
Universidad Internacional Iberoamericana Puerto Rico > Investigación > Producción Científica
Universidad Internacional do Cuanza > Investigación > Producción Científica
Abierto
Inglés
Facial emotion recognition (FER) is an important and developing topic of research in the field of pattern recognition. The effective application of facial emotion analysis is gaining popularity in surveillance footage, expression analysis, activity recognition, home automation, computer games, stress treatment, patient observation, depression, psychoanalysis, and robotics. Robot interfaces, emotion-aware smart agent systems, and efficient human–computer interaction all benefit greatly from facial expression recognition. This has garnered attention as a key prospect in recent years. However, due to shortcomings in the presence of occlusions, fluctuations in lighting, and changes in physical appearance, research on emotion recognition has to be improved. This paper proposes a new architecture design of a convolutional neural network (CNN) for the FER system and contains five convolution layers, one fully connected layer with rectified linear unit activation function, and a SoftMax layer. Additionally, the feature map enhancement is applied to accomplish a higher detection rate and higher precision. Lastly, an application is developed that mitigates the effects of the aforementioned problems and can identify the basic expressions of human emotions, such as joy, grief, surprise, fear, contempt, anger, etc. Results indicate that the proposed CNN achieves 92.66% accuracy with mixed datasets, while the accuracy for the cross dataset is 94.94%.
metadata
Qazi, Awais Salman; Farooq, Muhammad Shoaib; Rustam, Furqan; Gracia Villar, Mónica; Rodríguez Velasco, Carmen Lilí y Ashraf, Imran
mail
SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, monica.gracia@uneatlantico.es, carmen.rodriguez@uneatlantico.es, SIN ESPECIFICAR
(2022)
Emotion Detection Using Facial Expression Involving Occlusions and Tilt.
Applied Sciences, 12 (22).
p. 11797.
ISSN 2076-3417
Revista
Materias > Ingeniería
Universidad Internacional Iberoamericana México > Investigación > Revistas Científicas
Universidad Europea del Atlántico > Investigación > Revistas Científicas
Fundación Universitaria Internacional de Colombia > Investigación > Revistas Científicas
Universidad Internacional Iberoamericana Puerto Rico > Investigación > Revistas Científicas
Universidad Internacional do Cuanza > Investigación > Revistas Científicas
Abierto
Español
La revista Environmental Sciences and Practices (ESAP) nace como una publicación semestral con el objetivo de invitar a la reflexión y el debate para entender correctamente cual es la función, aporte y responsabilidad medioambiental no solo del mundo académico sino además en el espacio profesional.
Comenzando por entender que el área de ESAP, es un espacio interdisciplinario, bajo un concepto innovador, colaborativo e integral hacia todas las áreas que convergen en una temática de interés común: el medio ambiente.
Los artículos incluidos en esta revista se publican en español, portugués e inglés, atendiendo de esta manera a un espacio internacional y multicultural que permita una gestión del conocimiento actual, propia y necesaria del área medioambiental.
A partir de esta página, podrá acceder a los índices de todas las ediciones de la revista Environmental Sciences and Practices, los resúmenes del artículo y los textos completos. Asimismo, en la sección "Acerca de" encontrará toda la información sobre nuestra revista, su equipo editorial, sistema de publicación y envíos en línea.
metadata
SIN ESPECIFICAR
mail
mls@devnull.funiber.org
(2022)
Environmental Sciences and Practices.
[Revista]
Artículo
Materias > Ingeniería
Universidad Europea del Atlántico > Investigación > Producción Científica
Fundación Universitaria Internacional de Colombia > Investigación > Artículos y libros
Universidad Internacional Iberoamericana México > Investigación > Producción Científica
Universidad Internacional Iberoamericana Puerto Rico > Investigación > Producción Científica
Universidad Internacional do Cuanza > Investigación > Producción Científica
Abierto
Inglés
The purpose of this article is to help to bridge the gap between sustainability and its application to project management by developing a methodology based on artificial intelligence to diagnose, classify, and forecast the level of sustainability of a sample of 186 projects aimed at local communities in Latin American and Caribbean countries. First, the compliance evaluation with the Sustainable Development Goals (SDGs) within the framework of the 2030 Agenda served to diagnose and determine, through fuzzy sets, a global sustainability index for the sample, resulting in a value of 0.638, in accordance with the overall average for the region. Probabilistic predictions were then made on the sustainability of the projects using a series of supervised learning classifiers (SVM, Random Forest, AdaBoost, KNN, etc.), with the SMOTE resampling technique, which provided a significant improvement toward the results of the different metrics of the base models. In this context, the Support Vector Machine (SVM) + SMOTE was the best classification algorithm, with accuracy of 0.92. Lastly, the extrapolation of this methodology is to be expected toward other realities and local circumstances, contributing to the fulfillment of the SDGs and the development of individual and collective capacities through the management and direction of projects.
metadata
García Villena, Eduardo; Pascual Barrera, Alina Eugenia; Álvarez, Roberto Marcelo; Dzul López, Luis Alonso; Tutusaus, Kilian; Vidal Mazón, Juan Luis; Miró Vera, Yini Airet; Brie, Santiago y López Flores, Miguel A.
mail
eduardo.garcia@uneatlantico.es, alina.pascual@unini.edu.mx, roberto.alvarez@uneatlantico.es, luis.dzul@uneatlantico.es, kilian.tutusaus@uneatlantico.es, juanluis.vidal@uneatlantico.es, yini.miro@uneatlantico.es, santiago.brie@uneatlantico.es, miguelangel.lopez@uneatlantico.es
(2022)
Evaluation of the Sustainable Development Goals in the Diagnosis and Prediction of the Sustainability of Projects Aimed at Local Communities in Latin America and the Caribbean.
Applied Sciences, 12 (21).
p. 11188.
ISSN 2076-3417
Artículo
Materias > Ingeniería
Universidad Europea del Atlántico > Investigación > Producción Científica
Fundación Universitaria Internacional de Colombia > Investigación > Artículos y libros
Universidad Internacional Iberoamericana México > Investigación > Producción Científica
Universidad Internacional Iberoamericana Puerto Rico > Investigación > Producción Científica
Universidad Internacional do Cuanza > Investigación > Producción Científica
Abierto
Inglés
This paper presents the design, development, and testing of an IoT-enabled smart stick for visually impaired people to navigate the outside environment with the ability to detect and warn about obstacles. The proposed design employs ultrasonic sensors for obstacle detection, a water sensor for sensing the puddles and wet surfaces in the user’s path, and a high-definition video camera integrated with object recognition. Furthermore, the user is signaled about various hindrances and objects using voice feedback through earphones after accurately detecting and identifying objects. The proposed smart stick has two modes; one uses ultrasonic sensors for detection and feedback through vibration motors to inform about the direction of the obstacle, and the second mode is the detection and recognition of obstacles and providing voice feedback. The proposed system allows for switching between the two modes depending on the environment and personal preference. Moreover, the latitude/longitude values of the user are captured and uploaded to the IoT platform for effective tracking via global positioning system (GPS)/global system for mobile communication (GSM) modules, which enable the live location of the user/stick to be monitored on the IoT dashboard. A panic button is also provided for emergency assistance by generating a request signal in the form of an SMS containing a Google maps link generated with latitude and longitude coordinates and sent through an IoT-enabled environment. The smart stick has been designed to be lightweight, waterproof, size adjustable, and has long battery life. The overall design ensures energy efficiency, portability, stability, ease of access, and robust features.
metadata
Farooq, Muhammad Siddique; Shafi, Imran; Khan, Harris; Díez, Isabel De La Torre; Breñosa, Jose; Martínez Espinosa, Julio César y Ashraf, Imran
mail
SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, josemanuel.brenosa@uneatlantico.es, ulio.martinez@unini.edu.mx, SIN ESPECIFICAR
(2022)
IoT Enabled Intelligent Stick for Visually Impaired People for Obstacle Recognition.
Sensors, 22 (22).
p. 8914.
ISSN 1424-8220
Artículo
Materias > Biomedicina
Materias > Ingeniería
Universidad Europea del Atlántico > Investigación > Producción Científica
Fundación Universitaria Internacional de Colombia > Investigación > Artículos y libros
Universidad Internacional Iberoamericana México > Investigación > Producción Científica
Universidad Internacional Iberoamericana Puerto Rico > Investigación > Producción Científica
Universidad Internacional do Cuanza > Investigación > Producción Científica
Abierto
Inglés
Mobility and low energy consumption are considered the main requirements for wireless body area sensor networks (WBASN) used in healthcare monitoring systems (HMS). In HMS, battery-powered sensor nodes with limited energy are used to obtain vital statistics about the body. Hence, energy-efficient schemes are desired to maintain long-term and steady connectivity of the sensor nodes. A sheer amount of energy is consumed in activities such as idle listening, excessive transmission and reception of control messages, packet collisions and retransmission of packets, and poor path selection, that may lead to more energy consumption. A combination of adaptive scheduling with an energy-efficient protocol can help select an appropriate path at a suitable time to minimize the control overhead, energy consumption, packet collision, and excessive idle listening. This paper proposes a region-based energy-efficient multipath routing (REMR) approach that divides the entire sensor network into clusters with preferably multiple candidates to represent each cluster. The cluster representatives (CRs) route packets through various clusters. For routing, the energy requirement of each route is considered, and the path with minimum energy requirements is selected. Similarly, end-to-end delay, higher throughput, and packet-delivery ratio are considered for packet routing.
metadata
Akbar, Shuja; Mehdi, Muhammad Mohsin; Jamal, M. Hasan; Raza, Imran; Hussain, Syed Asad; Breñosa, Jose; Martínez Espinosa, Julio César; Pascual Barrera, Alina Eugenia y Ashraf, Imran
mail
SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, josemanuel.brenosa@uneatlantico.es, ulio.martinez@unini.edu.mx, alina.pascual@unini.edu.mx, SIN ESPECIFICAR
(2022)
Multipath Routing in Wireless Body Area Sensor Network for Healthcare Monitoring.
Healthcare, 10 (11).
p. 2297.
ISSN 2227-9032
Otro
Materias > Ingeniería
Universidad Europea del Atlántico > Investigación > Proyectos I+D+I
Fundación Universitaria Internacional de Colombia > Investigación > Proyectos I+D+I
Universidad Internacional Iberoamericana México > Investigación > Proyectos I+D+I
Universidad Internacional Iberoamericana Puerto Rico > Investigación > Proyectos I+D+I
Universidad Internacional do Cuanza > Investigación > Proyectos I+D+I
Cerrado
Español
La línea de actividad científico-técnica que se propone se titula “Observatorio 5G“ y está orientada a generar conocimiento en el ámbito de las nuevas redes de telecomunicaciones y servicios asociados al estándar tecnológico de quinta generación para redes móviles de banda ancha (5G).
El despliegue de la quinta generación de tecnologías de telefonía móvil, conocida como 5G, está protagonizado por la necesidad de conseguir que las diferentes compañías fabricantes consigan implantar sus estándares a nivel internacional.
A diferencia de las tecnologías de 3G y 4G donde era necesario un despliegue masivo para dar servicio a cuanto mayor número posible de población, la tecnología 5G se basa en el concepto de despliegues particulares, con soluciones críticas mediante soluciones ad-hoc. Por ello, es importante tanto la creación de un potente ecosistema 5G así como que el mismo contemple a los emprendedores y pequeñas empresas que será quienes creen los servicios que solucionen los problemas concretos de las industrias sobre esta nueva tecnología.
La tecnología 5G será una realidad en breve. Por ello, se requiere realizar acciones que permitan que los países lideren su implantación de una manera sólida, ordenada y consensuada permitiendo una ventaja competitiva tanto a nivel gubernamental como industrial para desarrollar un ecosistema adecuado del despliegue de 5G.
Para poder dar soluciones en tres ámbitos de actuación (Coordinación de Proyectos; Regulación y Legislación; e Innovación, Emprendimiento y Estandarización) se propone analizar la creación de un Observatorio 5G.
El objetivo general del presente proyecto es elaborar un estudio que permita analizar la factibilidad de la creación de un Observatorio 5G.
Para ello, será necesario identificar las grandes líneas maestras que deben ser comunes a un observatorio según las singularidades de cada territorio.
En particular, nuestro interés será identificar oportunidades alrededor de lo que denominábamos “innovación y ecosistema 5G”, es decir, oportunidades que se puedan abrir especialmente:
- Para la creación de un ecosistema científico-técnico que comparta la capacidad de Innovación mediante la tecnología 5G (Universidades, Centros Tecnológicos, Centros de I+D de las empresas, etc.).
- Para la generación de conocimiento con el mundo científico y académico que permita adaptar la formación del talento para tener en cuenta las necesidades futuras en base a la tecnología.
- Crear sinergias desde el ecosistema de innovación con el ecosistema de emprendimiento que favorezca la creación de nuevas empresas y productos para liderar el mercado.
- Generar capacitaciones y formación continua.
metadata
SIN ESPECIFICAR
mail
SIN ESPECIFICAR
(2022)
Observatorio 5G.
Repositorio de la Universidad.
(Inédito)
Artículo
Materias > Ingeniería
Universidad Europea del Atlántico > Investigación > Producción Científica
Fundación Universitaria Internacional de Colombia > Investigación > Artículos y libros
Universidad Internacional Iberoamericana México > Investigación > Producción Científica
Universidad Internacional Iberoamericana Puerto Rico > Investigación > Producción Científica
Universidad Internacional do Cuanza > Investigación > Producción Científica
Abierto
Inglés
β-Thalassemia is one of the dangerous causes of the high mortality rate in the Mediterranean countries. Substantial resources are required to save a β-Thalassemia carriers’ life and early detection of thalassemia patients can help appropriate treatment to increase the carrier’s life expectancy. Being a genetic disease, it can not be prevented however the analysis of several indicators in parents’ blood can be used to detect disorders causing Thalassemia. Laboratory tests for Thalassemia are time-consuming and expensive like high-performance liquid chromatography, Complete Blood Count (CBC) with peripheral smear, genetic test, etc. Red blood indices from CBC can be used with machine learning models for the same task. Despite the available approaches for Thalassemia carriers from CBC data, gaps exist between the desired and achieved accuracy. Moreover, the data imbalance problem is studied well which makes the models less generalizable. This study proposes a highly accurate approach for β-Thalassemia detection using red blood indices from CBC augmented by supervised machine learning. In view of the fact that all the features do not carry predictive information regarding the target variable, this study employs a unified framework of two features selection techniques including Principal Component Analysis (PCA) and Singular Vector Decomposition (SVD). The data imbalance between β-Thalassemia carrier and non-carriers is handled by Synthetic Minority Oversampling Technique (SMOTE) and Adaptive Synthetic (ADASYN). Extensive experiments are performed using many state-of-the-art machine learning models and deep learning models. Experimental results indicate the superiority of the proposed approach over existing approaches with an accuracy score of 0.96.
metadata
Rustam, Furqan; Ashraf, Imran; Jabbar, Shehbaz; Tutusaus, Kilian; Mazas Pérez-Oleaga, Cristina; Pascual Barrera, Alina Eugenia y de la Torre Diez, Isabel
mail
SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, kilian.tutusaus@uneatlantico.es, cristina.mazas@uneatlantico.es, alina.pascual@unini.edu.mx, SIN ESPECIFICAR
(2022)
Prediction β-Thalassemia carriers using complete blood count features.
Scientific Reports, 12 (1).
ISSN 2045-2322
Artículo
Materias > Ingeniería
Universidad Europea del Atlántico > Investigación > Producción Científica
Fundación Universitaria Internacional de Colombia > Investigación > Artículos y libros
Universidad Internacional Iberoamericana México > Investigación > Producción Científica
Universidad Internacional Iberoamericana Puerto Rico > Investigación > Producción Científica
Universidad Internacional do Cuanza > Investigación > Producción Científica
Abierto
Inglés
Conventional outage management practices in distribution systems are tedious and complex due to the long time taken to locate the fault. Emerging smart technologies and various cloud services offered could be utilized and integrated into the power industry to enhance the overall process, especially in the fault monitoring and normalizing fields in distribution systems. This paper introduces smart fault monitoring and normalizing technologies in distribution systems by using one of the most popular cloud service platforms, the Microsoft Azure Internet of Things (IoT) Hub, together with some of the related services. A hardware prototype was constructed based on part of a real underground distribution system network, and the fault monitoring and normalizing techniques were integrated to form a system. Such a system with IoT integration effectively reduces the power outage experienced by customers in the healthy section of the faulted feeder from approximately 1 h to less than 5 min and is able to improve the System Average Interruption Duration Index (SAIDI) and System Average Interruption Frequency Index (SAIFI) in electric utility companies significantly
metadata
Peter, Geno; Stonier, Albert Alexander; Gupta, Punit; Gavilanes, Daniel; Masías Vergara, Manuel y Lung sin, Jong
mail
SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, daniel.gavilanes@uneatlantico.es, manuel.masias@uneatlantico.es, SIN ESPECIFICAR
(2022)
Smart Fault Monitoring and Normalizing of a Power Distribution System Using IoT.
Energies, 15 (21).
p. 8206.
ISSN 1996-1073
Artículo
Materias > Ingeniería
Universidad Europea del Atlántico > Investigación > Producción Científica
Fundación Universitaria Internacional de Colombia > Investigación > Artículos y libros
Universidad Internacional Iberoamericana México > Investigación > Producción Científica
Universidad Internacional Iberoamericana Puerto Rico > Investigación > Producción Científica
Universidad Internacional do Cuanza > Investigación > Producción Científica
Abierto
Inglés
Technology’s expansion has contributed to the rise in popularity of social media platforms. Twitter is one of the leading social media platforms that people use to share their opinions. Such opinions, sometimes, may contain threatening text, deliberately or non-deliberately, which can be disturbing for other users. Consequently, the detection of threatening content on social media is an important task. Contrary to high-resource languages like English, Dutch, and others that have several such approaches, the low-resource Urdu language does not have such a luxury. Therefore, this study presents an intelligent threatening language detection for the Urdu language. A stacking model is proposed that uses an extra tree (ET) classifier and Bayes theorem-based Bernoulli Naive Bayes (BNB) as the based learners while logistic regression (LR) is employed as the meta learner. A performance analysis is carried out by deploying a support vector classifier, ET, LR, BNB, fully connected network, convolutional neural network, long short-term memory, and gated recurrent unit. Experimental results indicate that the stacked model performs better than both machine learning and deep learning models. With 74.01% accuracy, 70.84% precision, 75.65% recall, and 73.99% F1 score, the model outperforms the existing benchmark study.
metadata
Mehmood, Aneela; Farooq, Muhammad Shoaib; Naseem, Ansar; Rustam, Furqan; Gracia Villar, Mónica; Rodríguez Velasco, Carmen Lilí y Ashraf, Imran
mail
SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, monica.gracia@uneatlantico.es, carmen.rodriguez@uneatlantico.es, SIN ESPECIFICAR
(2022)
Threatening URDU Language Detection from Tweets Using Machine Learning.
Applied Sciences, 12 (20).
p. 10342.
ISSN 2076-3417
2021
Otro
Materias > Ingeniería
Universidad Europea del Atlántico > Investigación > Proyectos I+D+I
Fundación Universitaria Internacional de Colombia > Investigación > Proyectos I+D+I
Universidad Internacional Iberoamericana México > Investigación > Proyectos I+D+I
Universidad Internacional Iberoamericana Puerto Rico > Investigación > Proyectos I+D+I
Universidad Internacional do Cuanza > Investigación > Proyectos I+D+I
Cerrado
Español
"La actividad de I+D que se propone se orienta a desarrollar un módulo informático que permita la gestión indexada del material audiovisual que puede complementar al contenido en las revistas digitales. Además, se crea un sistema de métricas empleando tecnologías de inteligencia de negocio (business intelligence).
Los objetivos específicos de la actividad de I+D son:
1. Definir un estándar adecuado para definir los metadatos relacionados con recursos audiovisuales contenidos y gestionados por una plataforma digital de una revista científica o editorial.
2. Desarrollar una solución para crear un canal de consulta de recursos audiovisuales (artículos y revistas) contenidos en una plataforma digital.
3. Construir un prototipo experimental que incluya la funcionalidad de la gestión indexada del recurso audiovisual.
4. Proponer un sistema de métricas empleando tecnologías relacionadas con la inteligencia de negocio (business intelligence) a partir de las estadísticas que se generan en el sistema. "
metadata
SIN ESPECIFICAR
mail
mls@devnull.funiber.org
(2021)
DIGI: Desarrollo de un prototipo digital para la gestión de recursos audiovisuales.
Repositorio de la Universidad.
(Inédito)
Otro
Materias > Ingeniería
Universidad Europea del Atlántico > Investigación > Proyectos I+D+I
Fundación Universitaria Internacional de Colombia > Investigación > Proyectos I+D+I
Universidad Internacional Iberoamericana México > Investigación > Proyectos I+D+I
Universidad Internacional Iberoamericana Puerto Rico > Investigación > Proyectos I+D+I
Universidad Internacional do Cuanza > Investigación > Proyectos I+D+I
Cerrado
Español
La línea de actividad científico-técnica está orientada a explorar nuevas formas de desarrollo de software y arquitecturas que puedan ser extensibles a sistemas de gestión en el ámbito de la educación. El objetivo general del proyecto es evaluar la implantación de aplicativos informáticos de gestión por medio de una arquitectura de microservicios.
Objetivos específicos:
1- Diseñar una arquitectura de software basada en microservicios incluyendo la definición de las herramientas de desarrollo e infraestructuras necesarias.
2- Desarrollar un módulo para la gestión curricular en el ámbito académico.
3- Desarrollar un módulo-componente para cuadros de mando integral aplicables a diferentes dominios de aplicación.
4- Evaluar los resultados obtenidos en los prototipos implantados, la metodología empleada, la arquitectura propuesta de microservicios y la infraestructura utilizada.
A través del presente proyecto, se espera incrementar el nivel de actividad innovadora, en particular en los campos de: arquitectura de microservicios, microservicios multi-dominio.
Algunos de los resultados esperados son: arquitectura de microservicios y novedosa estrategia de desarrollo en la organización, mejora productiva en el proceso de desarrollo de soluciones TIC, mejora en los procesos de gestión académica.
metadata
SIN ESPECIFICAR
mail
SIN ESPECIFICAR
(2021)
Desarrollo experimental de una arquitectura de microservicios aplicada a la gestión académica.
Repositorio de la Universidad.
(Inédito)
Otro
Materias > Ingeniería
Universidad Europea del Atlántico > Investigación > Proyectos I+D+I
Fundación Universitaria Internacional de Colombia > Investigación > Proyectos I+D+I
Universidad Internacional Iberoamericana México > Investigación > Proyectos I+D+I
Universidad Internacional Iberoamericana Puerto Rico > Investigación > Proyectos I+D+I
Universidad Internacional do Cuanza > Investigación > Proyectos I+D+I
Cerrado
Español
El proyecto de investigación que se pretende llevar a cabo se refiere a la “Formación práctica mediante la aplicación de tecnologías basadas en entornos virtuales, aumentados e inmersivos“, y está orientado a una investigación que nos permita aplicar tecnologías de la información para simular entornos reales que son útiles en el ámbito de la educación y en concreto pretendemos innovar en los sistemas de evaluación que permitan a los docentes emplear estos entornos digitales.
Las plataformas y medios digitales están cada vez más presentes en la sociedad y por ende en las organizaciones empresariales. Los profesionales de la educación no son ajenos a esta situación y se aprovechan de estas tecnologías y a la vez se enfrentan al reto de adaptarse de manera constante al avance tecnológico y a las repercusiones que tiene en su desempeño. En este ámbito, el desarrollo de las plataformas digitales para aprendizaje se ha visto impulsado por la confluencia de múltiples factores entre los cuales se destaca el avance tecnológico, la disponibilidad de dispositivos, las nuevas generaciones de nativos digitales. La formación e-learning es un ejemplo del auge de estas plataformas digitales pero todavía nos encontramos tecnologías más avanzadas como la realidad virtual, tecnologías inmersivas, Internet de las Cosas, etc. que también tienen o tendrán cabida en el entorno educativo.
Nuestro proyecto nace con el objetivo de aportar valor a este escenario alrededor de los conocidos como entornos virtuales.
Desde el sector educativo universitario, se ha sabido ver la oportunidad de la aplicación de estas técnicas a los procesos formativos del alumnado, inicialmente desde las ramas de la ingeniería que se dedicaban al propio desarrollo de estas tecnologías, y posteriormente desde las disciplinas más afines al aprendizaje cognitivo humano como pueden ser la Psicología o la Pedagogía que buscan evaluar estas técnicas respecto a otras metodologías más clásicas presentes en la Educación.
Sin embargo, como se puede extraer de diversos artículos científicos que aplican estas modalidades para la educación, persisten carencias para que los docentes de cualquier área/disciplina dispongan de herramientas lo suficientemente intuitivas para crear los entornos virtuales para simular los entornos profesionales de su especialidad. El diseño de herramientas para docentes (T. Budai, 2019), ayudaría a evitar estas barreras de entrada para extender su uso.
Por otro lado, aunque las publicaciones que aplican este tipo de tecnologías a la enseñanza (N. Pellas, 2020), la formación profesional (H. B. Andersson, 2020), o incluso a aprendizajes cognitivos (E. Rho, 2020), consideran que son muy positivas desde el punto de vista pedagógico (H. Ardiny, 2018), se reclama una necesidad en cuanto a establecer unas métricas y metodologías de evaluación apropiadas al proceso de enseñanza-aprendizaje (A. Dengel, 2018), (A. Christopoulos, 2019). En algunos casos se habla la gran asignatura pendiente, que es el tema de la evaluación. Cuando los docentes intentan implementar instrumentos de evaluación basados en entornos digitales, encuentran dificultades para hallar el equilibrio entre la evaluación, la metodología y el uso de los nuevos medios.
Ante este escenario, el proyecto pretende diseñar y desarrollar un entorno virtual experimental para la educación práctica universitaria con énfasis en el sistema de evaluación del proceso de aprendizaje y el control de calidad.
metadata
SIN ESPECIFICAR
mail
SIN ESPECIFICAR
(2021)
IMMERSIVE TECH: Formación práctica mediante la aplicación de tecnologías basadas en entornos virtuales, aumentados e inmersivos.
Repositorio de la Universidad.
(Inédito)
2020
Otro
Materias > Ingeniería
Materias > Educación
Universidad Europea del Atlántico > Investigación > Proyectos I+D+I
Fundación Universitaria Internacional de Colombia > Investigación > Proyectos I+D+I
Universidad Internacional Iberoamericana México > Investigación > Proyectos I+D+I
Universidad Internacional Iberoamericana Puerto Rico > Investigación > Proyectos I+D+I
Universidad Internacional do Cuanza > Investigación > Proyectos I+D+I
Cerrado
Español
1- Gestionar online el proceso de revisión de contenidos recibidos y gestionarlo a distancia, contando con usuarios que se conectan al sistema de forma online y aportan sus valoraciones a través de la misma plataforma. En este caso se trata de facilitar un flujo de trabajo entre los diferentes participantes en el proceso (director de revista, editor en jefe, editor y revisor), de forma que puedan optimizar su productividad y trabajar de forma asincrónica sobre unos mismos contenidos editoriales y siguiendo un proceso homogéneo de acuerdo a nuestros procedimientos.
2- Automatizar determinados procesos de revisión de contenidos. En concreto, habíamos considerado de interés mejorar el proceso de revisión del formato de los artículos recibidos gracias a un software basado en inteligencia artificial. Teniendo en cuenta que los artículos científicos tienen una estructura y contenidos normalizados, pensamos que era posible automatizar algunos elementos de la revisión preliminar de contenidos.
3- Disponer de una solución para la fidelización de autores-revisores generando automáticamente certificados de participación como revisores de artículos científicos. Teniendo en cuenta la dificultad de lograr la participación de revisores científicos, y como parte del sistema de fidelización, se propuso una innovación en la plataforma, que permite generar de forma automática un auto-certificado para los revisores.
4- Estudiar la aplicación de los metadatos, las plataformas multilingües y las de e-commerce para distribución de contenidos. En este caso, lo que se hizo fue solicitar unos estudios de vigilancia tecnológica relacionados con:
- Estándares internacionales para la creación de metadatos que nos permitan indexar de la mejor manera posible nuestros contenidos.
- Estándares para plataformas multilingües que nos fueran de aplicación para crear un sistema de gestión de contenidos multi-idioma enlazado con los procesos de traducción.
- Plataformas de e-commerce adaptadas a la distribución de contenidos electrónicos que nos permitiesen monetizar determinados contenidos y venderlos en Internet.
metadata
SIN ESPECIFICAR
mail
SIN ESPECIFICAR
(2020)
Estudios de vigilancia tecnológica y proyecto piloto para revista electrónica.
Repositorio de la Universidad.
(Inédito)
2019
Revista
Materias > Ingeniería
Universidad Europea del Atlántico > Investigación > Revistas Científicas
Fundación Universitaria Internacional de Colombia > Investigación > Revistas Científicas
Universidad Internacional Iberoamericana México > Investigación > Revistas Científicas
Universidad Internacional Iberoamericana Puerto Rico > Investigación > Revistas Científicas
Universidad Internacional do Cuanza > Investigación > Revistas Científicas
Abierto
Español
La revista Project Design and Management nace como una publicación semestral con el objetivo de invitar a la reflexión y el debate para entender correctamente cual es la función, aporte y responsabilidad del área Project, Design y Management (PDM) en la actualidad, no solo del mundo académico sino además en el espacio profesional.
Comenzando por entender que el área de PDM, es un espacio interdisciplinario, bajo un concepto innovador, colaborativo e integral hacia todas las áreas que participan, no solo en la administración de los recursos necesarios para un proyecto sino además, en el diseño o desarrollo del mismo.
Los artículos incluidos en esta revista se publican en español, portugués e inglés, atendiendo de esta manera a un espacio internacional y multicultural que permita una gestión del conocimiento actual, propia y necesaria del área PDM.
metadata
SIN ESPECIFICAR
mail
mls@devnull.funiber.org
(2019)
Project Design and Management.
[Revista]
2017
Otro
Materias > Ingeniería
Universidad Europea del Atlántico > Investigación > Proyectos I+D+I
Fundación Universitaria Internacional de Colombia > Investigación > Proyectos I+D+I
Universidad Internacional Iberoamericana México > Investigación > Proyectos I+D+I
Universidad Internacional Iberoamericana Puerto Rico > Investigación > Proyectos I+D+I
Universidad Internacional do Cuanza > Investigación > Proyectos I+D+I
Cerrado
Español
El objetivo principal del proyecto es el desarrollo de un conjunto de tecnologías digitales estandarizables que permitan a la empresa crear una API (Application Programming Interface) de interconexión entre una revista científica y entidades externas, como pueden ser bibliotecas universitarias y otros intermediarios de recursos de información.
En síntesis, las principales innovaciones del proyecto son: la creación de un formato estándar de intercambio de datos para los artículos científicos, monetizar la difusión de contenidos científicos en un formato B2B, la implementación de una nueva funcionalidad para la plataforma OJS inexistente en el mercado, así como facilitar el intercambio de datos y acceso a la información entre plataformas.
metadata
SIN ESPECIFICAR
mail
SIN ESPECIFICAR
(2017)
TICartículo: Tecnologías de intercambio de datos de artículos científicos.
Repositorio de la Universidad.
<a href="/15333/1/nutrients-16-03907.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Background/Objectives: The diet quality of younger individuals is decreasing globally, with alarming trends also in the Mediterranean region. The aim of this study was to assess diet quality and adequacy in relation to country-specific dietary recommendations for children and adolescents living in the Mediterranean area. Methods: A cross-sectional survey was conducted of 2011 parents of the target population participating in the DELICIOUS EU-PRIMA project. Dietary data and cross-references with food-based recommendations and the application of the youth healthy eating index (YHEI) was assessed through 24 h recalls and food frequency questionnaires. Results: Adherence to recommendations on plant-based foods was low (less than ∼20%), including fruit and vegetables adequacy in all countries, legume adequacy in all countries except for Italy, and cereal adequacy in all countries except for Portugal. For animal products and dietary fats, the adequacy in relation to the national food-based dietary recommendations was slightly better (∼40% on average) in most countries, although the Eastern countries reported worse rates. Higher scores on the YHEI predicted adequacy in relation to vegetables (except Egypt), fruit (except Lebanon), cereals (except Spain), and legumes (except Spain) in most countries. Younger children (p < 0.005) reporting having 8–10 h adequate sleep duration (p < 0.001), <2 h/day screen time (p < 0.001), and a medium/high physical activity level (p < 0.001) displayed a better diet quality. Moreover, older respondents (p < 0.001) with a medium/high educational level (p = 0.001) and living with a partner (p = 0.003) reported that their children had a better diet quality. Conclusions: Plant-based food groups, including fruit, vegetables, legumes, and even (whole-grain) cereals are underrepresented in the diets of Mediterranean children and adolescents. Moreover, the adequate consumption of other important dietary components, such as milk and dairy products, is rather disregarded, leading to substantially suboptimal diets and poor adequacy in relation to dietary guidelines.
Francesca Giampieri mail francesca.giampieri@uneatlantico.es, Alice Rosi mail , Francesca Scazzina mail , Evelyn Frias-Toral mail , Osama Abdelkarim mail , Mohamed Aly mail , Raynier Zambrano-Villacres mail , Juancho Pons mail , Laura Vázquez-Araújo mail , Sandra Sumalla Cano mail sandra.sumalla@uneatlantico.es, Iñaki Elío Pascual mail inaki.elio@uneatlantico.es, Lorenzo Monasta mail , Ana Mata mail , María Isabel Pardo mail , Pablo Busó mail , Giuseppe Grosso mail ,
Giampieri
<a href="/14584/1/s41598-024-73664-6.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
The evolution of the COVID-19 pandemic has been associated with variations in clinical presentation and severity. Similarly, prediction scores may suffer changes in their diagnostic accuracy. The aim of this study was to test the 30-day mortality predictive validity of the 4C and SEIMC scores during the sixth wave of the pandemic and to compare them with those of validation studies. This was a longitudinal retrospective observational study. COVID-19 patients who were admitted to the Emergency Department of a Spanish hospital from December 15, 2021, to January 31, 2022, were selected. A side-by-side comparison with the pivotal validation studies was subsequently performed. The main measures were 30-day mortality and the 4C and SEIMC scores. A total of 27,614 patients were considered in the study, including 22,361 from the 4C, 4,627 from the SEIMC and 626 from our hospital. The 30-day mortality rate was significantly lower than that reported in the validation studies. The AUCs were 0.931 (95% CI: 0.90–0.95) for 4C and 0.903 (95% CI: 086–0.93) for SEIMC, which were significantly greater than those obtained in the first wave. Despite the changes that have occurred during the coronavirus disease 2019 (COVID-19) pandemic, with a reduction in lethality, scorecard systems are currently still useful tools for detecting patients with poor disease risk, with better prognostic capacity.
Pedro Ángel de Santos Castro mail , Carlos del Pozo Vegas mail , Leyre Teresa Pinilla Arribas mail , Daniel Zalama Sánchez mail , Ancor Sanz-García mail , Tony Giancarlo Vásquez del Águila mail , Pablo González Izquierdo mail , Sara de Santos Sánchez mail , Cristina Mazas Pérez-Oleaga mail cristina.mazas@uneatlantico.es, Irma Dominguez Azpíroz mail irma.dominguez@unini.edu.mx, Iñaki Elío Pascual mail inaki.elio@uneatlantico.es, Francisco Martín-Rodríguez mail ,
de Santos Castro
<a href="/14950/1/fmicb-15-1481418.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Background: The 2023 dengue outbreak has proven that dengue is not only an endemic disease but also an emerging health threat in Bangladesh. Integrated studies on the epidemiology, clinical characteristics, seasonality, and genotype of dengue are limited. This study was conducted to determine recent trends in the molecular epidemiology, clinical features, and seasonality of dengue outbreaks. Methods: We analyzed data from 41 original studies, extracting epidemiological information from all 41 articles, clinical symptoms from 30 articles, and genotypic diversity from 11 articles. The study adhered to the standards of the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) Statement and Cochrane Collaboration guidelines. Conclusion: This study provides integrated insights into the molecular epidemiology, clinical features, seasonality, and transmission of dengue in Bangladesh and highlights research gaps for future studies.
Nadim Sharif mail , Rubayet Rayhan Opu mail , Tama Saha mail , Abdullah Ibna Masud mail , Jannatin Naim mail , Khalaf F. Alsharif mail , Khalid J. Alzahrani mail , Eduardo René Silva Alvarado mail eduardo.silva@funiber.org, Irene Delgado Noya mail irene.delgado@uneatlantico.es, Isabel De la Torre Díez mail , Shuvra Kanti Dey mail ,
Sharif
<a href="/14282/1/s40537-024-00959-w.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Non-Insulin-Dependent Diabetes Mellitus (NIDDM) is a chronic health condition caused by high blood sugar levels, and if not treated early, it can lead to serious complications i.e. blindness. Human Activity Recognition (HAR) offers potential for early NIDDM diagnosis, emerging as a key application for HAR technology. This research introduces DiabSense, a state-of-the-art smartphone-dependent system for early staging of NIDDM. DiabSense incorporates HAR and Diabetic Retinopathy (DR) upon leveraging the power of two different Graph Neural Networks (GNN). HAR uses a comprehensive array of 23 human activities resembling Diabetes symptoms, and DR is a prevalent complication of NIDDM. Graph Attention Network (GAT) in HAR achieved 98.32% accuracy on sensor data, while Graph Convolutional Network (GCN) in the Aptos 2019 dataset scored 84.48%, surpassing other state-of-the-art models. The trained GCN analyzed retinal images of four experimental human subjects for DR report generation, and GAT generated their average duration of daily activities over 30 days. The daily activities in non-diabetic periods of diabetic patients were measured and compared with the daily activities of the experimental subjects, which helped generate risk factors. Fusing risk factors with DR conditions enabled early diagnosis recommendations for the experimental subjects despite the absence of any apparent symptoms. The comparison of DiabSense system outcome with clinical diagnosis reports in the experimental subjects was conducted using the A1C test. The test results confirmed the accurate assessment of early diagnosis requirements for experimental subjects by the system. Overall, DiabSense exhibits significant potential for ensuring early NIDDM treatment, improving millions of lives worldwide.
Md Nuho Ul Alam mail , Ibrahim Hasnine mail , Erfanul Hoque Bahadur mail , Abdul Kadar Muhammad Masum mail , Mercedes Briones Urbano mail mercedes.briones@uneatlantico.es, Manuel Masías Vergara mail manuel.masias@uneatlantico.es, Jia Uddin mail , Imran Ashraf mail , Md. Abdus Samad mail ,
Alam
<a href="/14278/1/s41746-024-01194-6.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Emergency medical services (EMSs) face critical situations that require patient risk classification based on analytical and vital signs. We aimed to establish clustering-derived phenotypes based on prehospital analytical and vital signs that allow risk stratification. This was a prospective, multicenter, EMS-delivered, ambulance-based cohort study considering six advanced life support units, 38 basic life support units, and four tertiary hospitals in Spain. Adults with unselected acute diseases managed by the EMS and evacuated with discharge priority to emergency departments were considered between January 1, 2020, and June 30, 2023. Prehospital point-of-care testing and on-scene vital signs were used for the unsupervised machine learning method (clustering) to determine the phenotypes. Then phenotypes were compared with the primary outcome (cumulative mortality (all-cause) at 2, 7, and 30 days). A total of 7909 patients were included. The median (IQR) age was 64 (51–80) years, 41% were women, and 26% were living in rural areas. Three clusters were identified: alpha 16.2% (1281 patients), beta 28.8% (2279), and gamma 55% (4349). The mortality rates for alpha, beta and gamma at 2 days were 18.6%, 4.1%, and 0.8%, respectively; at 7 days, were 24.7%, 6.2%, and 1.7%; and at 30 days, were 33%, 10.2%, and 3.2%, respectively. Based on standard vital signs and blood test biomarkers in the prehospital scenario, three clusters were identified: alpha (high-risk), beta and gamma (medium- and low-risk, respectively). This permits the EMS system to quickly identify patients who are potentially compromised and to proactively implement the necessary interventions.
Raúl López-Izquierdo mail , Carlos del Pozo Vegas mail , Ancor Sanz-García mail , Agustín Mayo Íscar mail , Miguel A. Castro Villamor mail , Eduardo René Silva Alvarado mail eduardo.silva@funiber.org, Santos Gracia Villar mail santos.gracia@uneatlantico.es, Luis Alonso Dzul López mail luis.dzul@uneatlantico.es, Silvia Aparicio Obregón mail silvia.aparicio@uneatlantico.es, Rubén Calderón Iglesias mail ruben.calderon@uneatlantico.es, Joan B. Soriano mail , Francisco Martín-Rodríguez mail ,
López-Izquierdo