Items where Division is "Fundación Universitaria Internacional de Colombia" and Year is [pin missing: value2]
![]() | Up a level |
en
close
Manuka honey, which is rich in pinocembrin, quercetin, naringenin, salicylic, p-coumaric, ferulic, syringic and 3,4-dihydroxybenzoic acids, has been shown to have pleiotropic effects against colon cancer cells. In this study, potential chemosensitizing effects of Manuka honey against 5-Fluorouracil were investigated in colonspheres enriched with cancer stem cells (CSCs), which are responsible for chemoresistance. Results showed that 5-Fluorouracil increased when it was combined with Manuka honey by downregulating the gene expression of both ATP-binding cassette sub-family G member 2, an efflux pump and thymidylate synthase, the main target of 5-Fluorouracil which regulates the ex novo DNA synthesis. Manuka honey was associated with decreased self-renewal ability by CSCs, regulating expression of several genes in Wnt/β-catenin, Hedgehog and Notch pathways. This preliminary study opens new areas of research into the effects of natural compounds in combination with pharmaceuticals and, potentially, increase efficacy or reduce adverse effects.
Danila Cianciosi mail , Yasmany Armas Diaz mail , José M. Alvarez-Suarez mail , Xiumin Chen mail , Di Zhang mail , Nohora Milena Martínez López mail nohora.martinez@uneatlantico.es, Mercedes Briones Urbano mail mercedes.briones@uneatlantico.es, José L. Quiles mail jose.quiles@uneatlantico.es, Adolfo Amici mail , Maurizio Battino mail maurizio.battino@uneatlantico.es, Francesca Giampieri mail francesca.giampieri@uneatlantico.es,
Cianciosi
<a class="ep_document_link" href="/9698/1/A_Systematic_Survey_of_AI_Models_in_Financial_Market_Forecasting_for_Profitability_Analysis.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
A Systematic Survey of AI Models in Financial Market Forecasting for Profitability Analysis
Artificial intelligence (AI)-based models have emerged as powerful tools in financial markets, capable of reducing investment risks and aiding in selecting highly profitable stocks by achieving precise predictions. This holds immense value for investors, as it empowers them to make data-driven decisions. Identifying current and future trends in multi-class forecasting techniques employed within financial markets, particularly profitability analysis as an evaluation metric is important. The review focuses on examining stud-ies conducted between 2018 and 2023, sourced from three prominent academic databases. A meticulous three-stage approach was employed, encompassing the systematic planning, conduct, and analysis of the se-lected studies. Specifically, the analysis emphasizes technical assessment, profitability analysis, hybrid mod-eling, and the type of results generated by models. Articles were shortlisted based on inclusion and exclusion criteria, while a rigorous quality assessment through ten quality criteria questions, utilizing a Likert-type scale was employed to ensure methodological robustness. We observed that ensemble and hybrid models with long short-term memory (LSTM) and support vector machines (SVM) are being more adopted for financial trends and price prediction. Moreover, hybrid models employing AI algorithms for feature engineering have great potential at par with ensemble techniques. Most studies only employ performance metrics and lack utilization of profitability metrics or investment or trading strategy (simulated or real-time). Similarly, research on multi-class or output is severely lacking in financial forecasting and can be a good avenue for future research.
Bilal Hassan Ahmed Khattak mail , Imran Shafi mail , Abdul Saboor Khan mail , Emmanuel Soriano Flores mail emmanuel.soriano@uneatlantico.es, Roberto García Lara mail , Md. Abdus Samad mail , Imran Ashraf mail ,
Khattak
<a href="/9908/1/e078815.full.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Objective The aim was to explore the association of demographic and prehospital parameters with short-term and long-term mortality in acute life-threatening cardiovascular disease by using a hazard model, focusing on elderly individuals, by comparing patients under 75 years versus patients over 75 years of age. Design Prospective, multicentre, observational study. Setting Emergency medical services (EMS) delivery study gathering data from two back-to-back studies between 1 October 2019 and 30 November 2021. Six advanced life support (ALS), 43 basic life support and five hospitals in Spain were considered. Participants Adult patients suffering from acute life-threatening cardiovascular disease attended by the EMS. Primary and secondary outcome measures The primary outcome was in-hospital mortality from any cause within the first to the 365 days following EMS attendance. The main measures included prehospital demographics, biochemical variables, prehospital ALS techniques used and syndromic suspected conditions. Results A total of 1744 patients fulfilled the inclusion criteria. The 365-day cumulative mortality in the elderly amounted to 26.1% (229 cases) versus 11.6% (11.6%) in patients under 75 years old. Elderly patients (≥75 years) presented a twofold risk of mortality compared with patients ≤74 years. Life-threatening interventions (mechanical ventilation, cardioversion and defibrillation) were also related to a twofold increased risk of mortality. Importantly, patients suffering from acute heart failure presented a more than twofold increased risk of mortality. Conclusions This study revealed the prehospital variables associated with the long-term mortality of patients suffering from acute cardiovascular disease. Our results provide important insights for the development of specific codes or scores for cardiovascular diseases to facilitate the risk of mortality characterisation.
Carlos del Pozo Vegas mail , Daniel Zalama-Sánchez mail , Ancor Sanz-Garcia mail , Raúl López-Izquierdo mail , Silvia Sáez-Belloso mail , Cristina Mazas Pérez-Oleaga mail cristina.mazas@uneatlantico.es, Irma Dominguez Azpíroz mail irma.dominguez@unini.edu.mx, Iñaki Elío Pascual mail inaki.elio@uneatlantico.es, Francisco Martín-Rodríguez mail ,
del Pozo Vegas
<a href="/9229/1/alvi-et-al-2023-a-lightweight-deep-learning-approach-for-covid-19-detection-using-x-ray-images-with-edge-federation.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
A lightweight deep learning approach for COVID-19 detection using X-ray images with edge federation
Objective This study aims to develop a lightweight convolutional neural network-based edge federated learning architecture for COVID-19 detection using X-ray images, aiming to minimize computational cost, latency, and bandwidth requirements while preserving patient privacy. Method The proposed method uses an edge federated learning architecture to optimize task allocation and execution. Unlike in traditional edge networks where requests from fixed nodes are handled by nearby edge devices or remote clouds, the proposed model uses an intelligent broker within the federation to assess member edge cloudlets' parameters, such as resources and hop count, to make optimal decisions for task offloading. This approach enhances performance and privacy by placing tasks in closer proximity to the user. DenseNet is used for model training, with a depth of 60 and 357,482 parameters. This resource-aware distributed approach optimizes computing resource utilization within the edge-federated learning architecture. Results The experimental results demonstrate significant improvements in various performance metrics. The proposed method reduces training time by 53.1%, optimizes CPU and memory utilization by 17.5% and 33.6%, and maintains accurate COVID-19 detection capabilities without compromising the F1 score, demonstrating the efficiency and effectiveness of the lightweight convolutional neural network-based edge federated learning architecture. Conclusion Existing studies predominantly concentrate on either privacy and accuracy or load balancing and energy optimization, with limited emphasis on training time. The proposed approach offers a comprehensive performance-centric solution that simultaneously addresses privacy, load balancing, and energy optimization while reducing training time, providing a more holistic and balanced solution for optimal system performance.
Sohaib Bin Khalid Alvi mail , Muhammad Ziad Nayyer mail , Muhammad Hasan Jamal mail , Imran Raza mail , Isabel de la Torre Diez mail , Carmen Lilí Rodríguez Velasco mail carmen.rodriguez@uneatlantico.es, Jose Breñosa mail josemanuel.brenosa@uneatlantico.es, Imran Ashraf mail ,
Alvi
<a class="ep_document_link" href="/9232/1/Health%20Science%20Reports%20-%202023%20-%20Sharif%20-%20Molecular%20epidemiology%20%20transmission%20and%20clinical%20features%20of%202022%E2%80%90mpox%20outbreak%20.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Background and Aims The 2022-mpox outbreak has spread worldwide in a short time. Integrated knowledge of the epidemiology, clinical characteristics, and transmission of mpox are limited. This systematic review of peer-reviewed articles and gray literature was conducted to shed light on the epidemiology, clinical features, and transmission of 2022-mpox outbreak. Methods We identified 45 peer-reviewed manuscripts for data analysis. The standards of the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) Statement and Cochrane Collaboration were followed for conducting the study. Results The case number of mpox has increased about 100 times worldwide. About 99% of the cases in 2022 outbreak was from non-endemic regions. Men (70%–98% cases) were mostly infected with homosexual and bisexual behavior (30%–60%). The ages of the infected people ranged between 30 and 40 years. The presence of HIV and sexually transmitted infections among 30%–60% of cases were reported. Human-to-human transmission via direct contact and different body fluids were involved in the majority of the cases (90%–100%). Lesions in genitals, perianal, and anogenital areas were more prevalent. Unusually, pharyngitis (15%–40%) and proctitis (20%–40%) were more common during 2022 outbreak than pre-2022 outbreaks. Brincidofovir is approved for the treatment of smallpox by FDA (USA). Two vaccines, including JYNNEOSTM and ACAM2000®, are approved and used for pre- and post-prophylaxis in cases. About 100% of the cases in non-endemic regions were associated with isolates of IIb clade with a divergence of 0.0018–0.0035. Isolates from B.1 lineage were the most predominant followed by B.1.2 and B.1.10. Conclusion This study will add integrated knowledge of the epidemiology, clinical features, and transmission of mpox.
Nadim Sharif mail , Nazmul Sharif mail , Khalid J. Alzahrani mail , Ibrahim F. Halawani mail , Fuad M. Alzahrani mail , Isabel De la Torre Díez mail , Vivian Lipari mail vivian.lipari@uneatlantico.es, Miguel Ángel López Flores mail miguelangel.lopez@uneatlantico.es, Anowar K. Parvez mail , Shuvra K. Dey mail ,
Sharif