DrunkChain: Blockchain-Based IoT System for Preventing Drunk Driving-Related Traffic Accidents

Artículo Materias > Ingeniería Universidad Europea del Atlántico > Investigación > Producción Científica
Fundación Universitaria Internacional de Colombia > Investigación > Artículos y libros
Universidad Internacional Iberoamericana México > Investigación > Producción Científica
Universidad Internacional Iberoamericana Puerto Rico > Investigación > Producción Científica
Universidad Internacional do Cuanza > Investigación > Producción Científica
Abierto Inglés Traffic accidents present significant risks to human life, leading to a high number of fatalities and injuries. According to the World Health Organization’s 2022 worldwide status report on road safety, there were 27,582 deaths linked to traffic-related events, including 4448 fatalities at the collision scenes. Drunk driving is one of the leading causes contributing to the rising count of deadly accidents. Current methods to assess driver alcohol consumption are vulnerable to network risks, such as data corruption, identity theft, and man-in-the-middle attacks. In addition, these systems are subject to security restrictions that have been largely overlooked in earlier research focused on driver information. This study intends to develop a platform that combines the Internet of Things (IoT) with blockchain technology in order to address these concerns and improve the security of user data. In this work, we present a device- and blockchain-based dashboard solution for a centralized police monitoring account. The equipment is responsible for determining the driver’s impairment level by monitoring the driver’s blood alcohol concentration (BAC) and the stability of the vehicle. At predetermined times, integrated blockchain transactions are executed, transmitting data straight to the central police account. This eliminates the need for a central server, ensuring the immutability of data and the existence of blockchain transactions that are independent of any central authority. Our system delivers scalability, compatibility, and faster execution times by adopting this approach. Through comparative research, we have identified a significant increase in the need for security measures in relevant scenarios, highlighting the importance of our suggested model. metadata Farooq, Hamza; Altaf, Ayesha; Iqbal, Faiza; Castanedo Galán, Juan; Gavilanes Aray, Daniel y Ashraf, Imran mail SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, juan.castanedo@uneatlantico.es, daniel.gavilanes@uneatlantico.es, SIN ESPECIFICAR (2023) DrunkChain: Blockchain-Based IoT System for Preventing Drunk Driving-Related Traffic Accidents. Sensors, 23 (12). p. 5388. ISSN 1424-8220

[img] Texto
sensors-23-05388.pdf
Available under License Creative Commons Attribution.

Descargar (3MB)

Resumen

Traffic accidents present significant risks to human life, leading to a high number of fatalities and injuries. According to the World Health Organization’s 2022 worldwide status report on road safety, there were 27,582 deaths linked to traffic-related events, including 4448 fatalities at the collision scenes. Drunk driving is one of the leading causes contributing to the rising count of deadly accidents. Current methods to assess driver alcohol consumption are vulnerable to network risks, such as data corruption, identity theft, and man-in-the-middle attacks. In addition, these systems are subject to security restrictions that have been largely overlooked in earlier research focused on driver information. This study intends to develop a platform that combines the Internet of Things (IoT) with blockchain technology in order to address these concerns and improve the security of user data. In this work, we present a device- and blockchain-based dashboard solution for a centralized police monitoring account. The equipment is responsible for determining the driver’s impairment level by monitoring the driver’s blood alcohol concentration (BAC) and the stability of the vehicle. At predetermined times, integrated blockchain transactions are executed, transmitting data straight to the central police account. This eliminates the need for a central server, ensuring the immutability of data and the existence of blockchain transactions that are independent of any central authority. Our system delivers scalability, compatibility, and faster execution times by adopting this approach. Through comparative research, we have identified a significant increase in the need for security measures in relevant scenarios, highlighting the importance of our suggested model.

Tipo de Documento: Artículo
Palabras Clave: Internet of Things; blockchain; drunk driver detection; network security; MQ3
Clasificación temática: Materias > Ingeniería
Divisiones: Universidad Europea del Atlántico > Investigación > Producción Científica
Fundación Universitaria Internacional de Colombia > Investigación > Artículos y libros
Universidad Internacional Iberoamericana México > Investigación > Producción Científica
Universidad Internacional Iberoamericana Puerto Rico > Investigación > Producción Científica
Universidad Internacional do Cuanza > Investigación > Producción Científica
Depositado: 30 Abr 2024 22:37
Ultima Modificación: 21 Oct 2024 23:30
URI: https://repositorio.unincol.edu.co/id/eprint/7550

Acciones (logins necesarios)

Ver Objeto Ver Objeto

<a href="/17140/1/s41598-025-90616-w.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Efficient CNN architecture with image sensing and algorithmic channeling for dataset harmonization

The process of image formulation uses semantic analysis to extract influential vectors from image components. The proposed approach integrates DenseNet with ResNet-50, VGG-19, and GoogLeNet using an innovative bonding process that establishes algorithmic channeling between these models. The goal targets compact efficient image feature vectors that process data in parallel regardless of input color or grayscale consistency and work across different datasets and semantic categories. Image patching techniques with corner straddling and isolated responses help detect peaks and junctions while addressing anisotropic noise through curvature-based computations and auto-correlation calculations. An integrated channeled algorithm processes the refined features by uniting local-global features with primitive-parameterized features and regioned feature vectors. Using K-nearest neighbor indexing methods analyze and retrieve images from the harmonized signature collection effectively. Extensive experimentation is performed on the state-of-the-art datasets including Caltech-101, Cifar-10, Caltech-256, Cifar-100, Corel-10000, 17-Flowers, COIL-100, FTVL Tropical Fruits, Corel-1000, and Zubud. This contribution finally endorses its standing at the peak of deep and complex image sensing analysis. A state-of-the-art deep image sensing analysis method delivers optimal channeling accuracy together with robust dataset harmonization performance.

Producción Científica

Khadija Kanwal mail , Khawaja Tehseen Ahmad mail , Aiza Shabir mail , Li Jing mail , Helena Garay mail helena.garay@uneatlantico.es, Luis Eduardo Prado González mail uis.prado@uneatlantico.es, Hanen Karamti mail , Imran Ashraf mail ,

Kanwal

<a class="ep_document_link" href="/17392/1/journal.pone.0317863.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Deep image features sensing with multilevel fusion for complex convolution neural networks & cross domain benchmarks

Efficient image retrieval from a variety of datasets is crucial in today's digital world. Visual properties are represented using primitive image signatures in Content Based Image Retrieval (CBIR). Feature vectors are employed to classify images into predefined categories. This research presents a unique feature identification technique based on suppression to locate interest points by computing productive sum of pixel derivatives by computing the differentials for corner scores. Scale space interpolation is applied to define interest points by combining color features from spatially ordered L2 normalized coefficients with shape and object information. Object based feature vectors are formed using high variance coefficients to reduce the complexity and are converted into bag-of-visual-words (BoVW) for effective retrieval and ranking. The presented method encompass feature vectors for information synthesis and improves the discriminating strength of the retrieval system by extracting deep image features including primitive, spatial, and overlayed using multilayer fusion of Convolutional Neural Networks(CNNs). Extensive experimentation is performed on standard image datasets benchmarks, including ALOT, Cifar-10, Corel-10k, Tropical Fruits, and Zubud. These datasets cover wide range of categories including shape, color, texture, spatial, and complicated objects. Experimental results demonstrate considerable improvements in precision and recall rates, average retrieval precision and recall, and mean average precision and recall rates across various image semantic groups within versatile datasets. The integration of traditional feature extraction methods fusion with multilevel CNN advances image sensing and retrieval systems, promising more accurate and efficient image retrieval solutions.

Producción Científica

Jyotismita Chaki mail , Aiza Shabir mail , Khawaja Tehseen Ahmed mail , Arif Mahmood mail , Helena Garay mail helena.garay@uneatlantico.es, Luis Eduardo Prado González mail uis.prado@uneatlantico.es, Imran Ashraf mail ,

Chaki

<a class="ep_document_link" href="/17450/1/ejaz-et-al-2025-fundus-image-classification-using-feature-concatenation-for-early-diagnosis-of-retinal-disease.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Fundus image classification using feature concatenation for early diagnosis of retinal disease

Background Deep learning models assist ophthalmologists in early detection of diseases from retinal images and timely treatment. Aim Owing to robust and accurate results from deep learning models, we aim to use convolutional neural network (CNN) to provide a non-invasive method for early detection of eye diseases. Methodology We used a hybridized CNN with deep learning (DL) based on two separate CNN blocks, to identify multiple Optic Disc Cupping, Diabetic Retinopathy, Media Haze, and Healthy images. We used the RFMiD dataset, which contains various categories of fundus images representing different eye diseases. Data augmenting, resizing, coping, and one-hot encoding are used among other preprocessing techniques to improve the performance of the proposed model. Color fundus images have been analyzed by CNNs to extract relevant features. Two CCN models that extract deep features are trained in parallel. To obtain more noticeable features, the gathered features are further fused utilizing the Canonical Correlation Analysis fusion approach. To assess the effectiveness, we employed eight classification algorithms: Gradient boosting, support vector machines, voting ensemble, medium KNN, Naive Bayes, COARSE- KNN, random forest, and fine KNN. Results With the greatest accuracy of 93.39%, the ensemble learning performed better than the other algorithms. Conclusion The accuracy rates suggest that the deep learning model has learned to distinguish between different eye disease categories and healthy images effectively. It contributes to the field of eye disease detection through the analysis of color fundus images by providing a reliable and efficient diagnostic system.

Producción Científica

Sara Ejaz mail , Hafiz U Zia mail , Fiaz Majeed mail , Umair Shafique mail , Stefanía Carvajal-Altamiranda mail stefania.carvajal@uneatlantico.es, Vivian Lipari mail vivian.lipari@uneatlantico.es, Imran Ashraf mail ,

Ejaz

<a href="/15983/1/Food%20Science%20%20%20Nutrition%20-%202025%20-%20Tanveer%20-%20Novel%20Transfer%20Learning%20Approach%20for%20Detecting%20Infected%20and%20Healthy%20Maize%20Crop.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Novel Transfer Learning Approach for Detecting Infected and Healthy Maize Crop Using Leaf Images

Maize is a staple crop worldwide, essential for food security, livestock feed, and industrial uses. Its health directly impacts agricultural productivity and economic stability. Effective detection of maize crop health is crucial for preventing disease spread and ensuring high yields. This study presents VG-GNBNet, an innovative transfer learning model that accurately detects healthy and infected maize crops through a two-step feature extraction process. The proposed model begins by leveraging the visual geometry group (VGG-16) network to extract initial pixel-based spatial features from the crop images. These features are then further refined using the Gaussian Naive Bayes (GNB) model and feature decomposition-based matrix factorization mechanism, which generates more informative features for classification purposes. This study incorporates machine learning models to ensure a comprehensive evaluation. By comparing VG-GNBNet's performance against these models, we validate its robustness and accuracy. Integrating deep learning and machine learning techniques allows VG-GNBNet to capitalize on the strengths of both approaches, leading to superior performance. Extensive experiments demonstrate that the proposed VG-GNBNet+GNB model significantly outperforms other models, achieving an impressive accuracy score of 99.85%. This high accuracy highlights the model's potential for practical application in the agricultural sector, where the precise detection of crop health is crucial for effective disease management and yield optimization.

Producción Científica

Muhammad Usama Tanveer mail , Kashif Munir mail , Ali Raza mail , Laith Abualigah mail , Helena Garay mail helena.garay@uneatlantico.es, Luis Eduardo Prado González mail uis.prado@uneatlantico.es, Imran Ashraf mail ,

Tanveer

<a href="/16759/1/nutrients-17-00529.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Chronotype and Cancer: Emerging Relation Between Chrononutrition and Oncology from Human Studies

Fasting–feeding timing is a crucial pattern implicated in the regulation of daily circadian rhythms. The interplay between sleep and meal timing underscores the importance of maintaining circadian alignment in order to avoid creating a metabolic environment conducive to carcinogenesis following the molecular and systemic disruption of metabolic performance and immune function. The chronicity of such a condition may support the initiation and progression of cancer through a variety of mechanisms, including increased oxidative stress, immune suppression, and the activation of proliferative signaling pathways. This review aims to summarize current evidence from human studies and provide an overview of the potential mechanisms underscoring the role of chrononutrition (including time-restricted eating) on cancer risk. Current evidence shows that the morning chronotype, suggesting an alignment between physiological circadian rhythms and eating timing, is associated with a lower risk of cancer. Also, early time-restricted eating and prolonged nighttime fasting were also associated with a lower risk of cancer. The current evidence suggests that the chronotype influences cancer risk through cell cycle regulation, the modulation of metabolic pathways and inflammation, and gut microbiota fluctuations. In conclusion, although there are no clear guidelines on this matter, emerging evidence supports the hypothesis that the role of time-related eating (i.e., time/calorie-restricted feeding and intermittent/periodic fasting) could potentially lead to a reduced risk of cancer.

Producción Científica

Justyna Godos mail , Walter Currenti mail , Raffaele Ferri mail , Giuseppe Lanza mail , Filippo Caraci mail , Evelyn Frias-Toral mail , Monica Guglielmetti mail , Cinzia Ferraris mail , Vivian Lipari mail vivian.lipari@uneatlantico.es, Stefanía Carvajal Altamiranda mail stefania.carvajal@uneatlantico.es, Fabio Galvano mail , Sabrina Castellano mail , Giuseppe Grosso mail ,

Godos