Prediction β-Thalassemia carriers using complete blood count features
Artículo
Materias > Ingeniería
Universidad Europea del Atlántico > Investigación > Producción Científica
Fundación Universitaria Internacional de Colombia > Investigación > Artículos y libros
Universidad Internacional Iberoamericana México > Investigación > Producción Científica
Universidad Internacional Iberoamericana Puerto Rico > Investigación > Producción Científica
Universidad Internacional do Cuanza > Investigación > Producción Científica
Abierto
Inglés
β-Thalassemia is one of the dangerous causes of the high mortality rate in the Mediterranean countries. Substantial resources are required to save a β-Thalassemia carriers’ life and early detection of thalassemia patients can help appropriate treatment to increase the carrier’s life expectancy. Being a genetic disease, it can not be prevented however the analysis of several indicators in parents’ blood can be used to detect disorders causing Thalassemia. Laboratory tests for Thalassemia are time-consuming and expensive like high-performance liquid chromatography, Complete Blood Count (CBC) with peripheral smear, genetic test, etc. Red blood indices from CBC can be used with machine learning models for the same task. Despite the available approaches for Thalassemia carriers from CBC data, gaps exist between the desired and achieved accuracy. Moreover, the data imbalance problem is studied well which makes the models less generalizable. This study proposes a highly accurate approach for β-Thalassemia detection using red blood indices from CBC augmented by supervised machine learning. In view of the fact that all the features do not carry predictive information regarding the target variable, this study employs a unified framework of two features selection techniques including Principal Component Analysis (PCA) and Singular Vector Decomposition (SVD). The data imbalance between β-Thalassemia carrier and non-carriers is handled by Synthetic Minority Oversampling Technique (SMOTE) and Adaptive Synthetic (ADASYN). Extensive experiments are performed using many state-of-the-art machine learning models and deep learning models. Experimental results indicate the superiority of the proposed approach over existing approaches with an accuracy score of 0.96.
metadata
Rustam, Furqan; Ashraf, Imran; Jabbar, Shehbaz; Tutusaus, Kilian; Mazas Pérez-Oleaga, Cristina; Pascual Barrera, Alina Eugenia y de la Torre Diez, Isabel
mail
SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, kilian.tutusaus@uneatlantico.es, cristina.mazas@uneatlantico.es, alina.pascual@unini.edu.mx, SIN ESPECIFICAR
(2022)
Prediction β-Thalassemia carriers using complete blood count features.
Scientific Reports, 12 (1).
ISSN 2045-2322
Texto
s41598-022-22011-8.pdf Available under License Creative Commons Attribution. Descargar (2MB) |
Resumen
β-Thalassemia is one of the dangerous causes of the high mortality rate in the Mediterranean countries. Substantial resources are required to save a β-Thalassemia carriers’ life and early detection of thalassemia patients can help appropriate treatment to increase the carrier’s life expectancy. Being a genetic disease, it can not be prevented however the analysis of several indicators in parents’ blood can be used to detect disorders causing Thalassemia. Laboratory tests for Thalassemia are time-consuming and expensive like high-performance liquid chromatography, Complete Blood Count (CBC) with peripheral smear, genetic test, etc. Red blood indices from CBC can be used with machine learning models for the same task. Despite the available approaches for Thalassemia carriers from CBC data, gaps exist between the desired and achieved accuracy. Moreover, the data imbalance problem is studied well which makes the models less generalizable. This study proposes a highly accurate approach for β-Thalassemia detection using red blood indices from CBC augmented by supervised machine learning. In view of the fact that all the features do not carry predictive information regarding the target variable, this study employs a unified framework of two features selection techniques including Principal Component Analysis (PCA) and Singular Vector Decomposition (SVD). The data imbalance between β-Thalassemia carrier and non-carriers is handled by Synthetic Minority Oversampling Technique (SMOTE) and Adaptive Synthetic (ADASYN). Extensive experiments are performed using many state-of-the-art machine learning models and deep learning models. Experimental results indicate the superiority of the proposed approach over existing approaches with an accuracy score of 0.96.
Tipo de Documento: | Artículo |
---|---|
Palabras Clave: | Computational biology andbioinformatics; Health care |
Clasificación temática: | Materias > Ingeniería |
Divisiones: | Universidad Europea del Atlántico > Investigación > Producción Científica Fundación Universitaria Internacional de Colombia > Investigación > Artículos y libros Universidad Internacional Iberoamericana México > Investigación > Producción Científica Universidad Internacional Iberoamericana Puerto Rico > Investigación > Producción Científica Universidad Internacional do Cuanza > Investigación > Producción Científica |
Depositado: | 05 Dic 2022 23:30 |
Ultima Modificación: | 17 Jul 2023 23:30 |
URI: | https://repositorio.unincol.edu.co/id/eprint/4905 |
Acciones (logins necesarios)
Ver Objeto |
<a class="ep_document_link" href="/15333/1/nutrients-16-03907.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Background/Objectives: The diet quality of younger individuals is decreasing globally, with alarming trends also in the Mediterranean region. The aim of this study was to assess diet quality and adequacy in relation to country-specific dietary recommendations for children and adolescents living in the Mediterranean area. Methods: A cross-sectional survey was conducted of 2011 parents of the target population participating in the DELICIOUS EU-PRIMA project. Dietary data and cross-references with food-based recommendations and the application of the youth healthy eating index (YHEI) was assessed through 24 h recalls and food frequency questionnaires. Results: Adherence to recommendations on plant-based foods was low (less than ∼20%), including fruit and vegetables adequacy in all countries, legume adequacy in all countries except for Italy, and cereal adequacy in all countries except for Portugal. For animal products and dietary fats, the adequacy in relation to the national food-based dietary recommendations was slightly better (∼40% on average) in most countries, although the Eastern countries reported worse rates. Higher scores on the YHEI predicted adequacy in relation to vegetables (except Egypt), fruit (except Lebanon), cereals (except Spain), and legumes (except Spain) in most countries. Younger children (p < 0.005) reporting having 8–10 h adequate sleep duration (p < 0.001), <2 h/day screen time (p < 0.001), and a medium/high physical activity level (p < 0.001) displayed a better diet quality. Moreover, older respondents (p < 0.001) with a medium/high educational level (p = 0.001) and living with a partner (p = 0.003) reported that their children had a better diet quality. Conclusions: Plant-based food groups, including fruit, vegetables, legumes, and even (whole-grain) cereals are underrepresented in the diets of Mediterranean children and adolescents. Moreover, the adequate consumption of other important dietary components, such as milk and dairy products, is rather disregarded, leading to substantially suboptimal diets and poor adequacy in relation to dietary guidelines.
Francesca Giampieri mail francesca.giampieri@uneatlantico.es, Alice Rosi mail , Francesca Scazzina mail , Evelyn Frias-Toral mail , Osama Abdelkarim mail , Mohamed Aly mail , Raynier Zambrano-Villacres mail , Juancho Pons mail , Laura Vázquez-Araújo mail , Sandra Sumalla Cano mail sandra.sumalla@uneatlantico.es, Iñaki Elío Pascual mail inaki.elio@uneatlantico.es, Lorenzo Monasta mail , Ana Mata mail , María Isabel Pardo mail , Pablo Busó mail , Giuseppe Grosso mail ,
Giampieri
<a class="ep_document_link" href="/14584/1/s41598-024-73664-6.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
The evolution of the COVID-19 pandemic has been associated with variations in clinical presentation and severity. Similarly, prediction scores may suffer changes in their diagnostic accuracy. The aim of this study was to test the 30-day mortality predictive validity of the 4C and SEIMC scores during the sixth wave of the pandemic and to compare them with those of validation studies. This was a longitudinal retrospective observational study. COVID-19 patients who were admitted to the Emergency Department of a Spanish hospital from December 15, 2021, to January 31, 2022, were selected. A side-by-side comparison with the pivotal validation studies was subsequently performed. The main measures were 30-day mortality and the 4C and SEIMC scores. A total of 27,614 patients were considered in the study, including 22,361 from the 4C, 4,627 from the SEIMC and 626 from our hospital. The 30-day mortality rate was significantly lower than that reported in the validation studies. The AUCs were 0.931 (95% CI: 0.90–0.95) for 4C and 0.903 (95% CI: 086–0.93) for SEIMC, which were significantly greater than those obtained in the first wave. Despite the changes that have occurred during the coronavirus disease 2019 (COVID-19) pandemic, with a reduction in lethality, scorecard systems are currently still useful tools for detecting patients with poor disease risk, with better prognostic capacity.
Pedro Ángel de Santos Castro mail , Carlos del Pozo Vegas mail , Leyre Teresa Pinilla Arribas mail , Daniel Zalama Sánchez mail , Ancor Sanz-García mail , Tony Giancarlo Vásquez del Águila mail , Pablo González Izquierdo mail , Sara de Santos Sánchez mail , Cristina Mazas Pérez-Oleaga mail cristina.mazas@uneatlantico.es, Irma Dominguez Azpíroz mail irma.dominguez@unini.edu.mx, Iñaki Elío Pascual mail inaki.elio@uneatlantico.es, Francisco Martín-Rodríguez mail ,
de Santos Castro
<a href="/14950/1/fmicb-15-1481418.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Background: The 2023 dengue outbreak has proven that dengue is not only an endemic disease but also an emerging health threat in Bangladesh. Integrated studies on the epidemiology, clinical characteristics, seasonality, and genotype of dengue are limited. This study was conducted to determine recent trends in the molecular epidemiology, clinical features, and seasonality of dengue outbreaks. Methods: We analyzed data from 41 original studies, extracting epidemiological information from all 41 articles, clinical symptoms from 30 articles, and genotypic diversity from 11 articles. The study adhered to the standards of the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) Statement and Cochrane Collaboration guidelines. Conclusion: This study provides integrated insights into the molecular epidemiology, clinical features, seasonality, and transmission of dengue in Bangladesh and highlights research gaps for future studies.
Nadim Sharif mail , Rubayet Rayhan Opu mail , Tama Saha mail , Abdullah Ibna Masud mail , Jannatin Naim mail , Khalaf F. Alsharif mail , Khalid J. Alzahrani mail , Eduardo René Silva Alvarado mail eduardo.silva@funiber.org, Irene Delgado Noya mail irene.delgado@uneatlantico.es, Isabel De la Torre Díez mail , Shuvra Kanti Dey mail ,
Sharif
<a href="/14282/1/s40537-024-00959-w.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Non-Insulin-Dependent Diabetes Mellitus (NIDDM) is a chronic health condition caused by high blood sugar levels, and if not treated early, it can lead to serious complications i.e. blindness. Human Activity Recognition (HAR) offers potential for early NIDDM diagnosis, emerging as a key application for HAR technology. This research introduces DiabSense, a state-of-the-art smartphone-dependent system for early staging of NIDDM. DiabSense incorporates HAR and Diabetic Retinopathy (DR) upon leveraging the power of two different Graph Neural Networks (GNN). HAR uses a comprehensive array of 23 human activities resembling Diabetes symptoms, and DR is a prevalent complication of NIDDM. Graph Attention Network (GAT) in HAR achieved 98.32% accuracy on sensor data, while Graph Convolutional Network (GCN) in the Aptos 2019 dataset scored 84.48%, surpassing other state-of-the-art models. The trained GCN analyzed retinal images of four experimental human subjects for DR report generation, and GAT generated their average duration of daily activities over 30 days. The daily activities in non-diabetic periods of diabetic patients were measured and compared with the daily activities of the experimental subjects, which helped generate risk factors. Fusing risk factors with DR conditions enabled early diagnosis recommendations for the experimental subjects despite the absence of any apparent symptoms. The comparison of DiabSense system outcome with clinical diagnosis reports in the experimental subjects was conducted using the A1C test. The test results confirmed the accurate assessment of early diagnosis requirements for experimental subjects by the system. Overall, DiabSense exhibits significant potential for ensuring early NIDDM treatment, improving millions of lives worldwide.
Md Nuho Ul Alam mail , Ibrahim Hasnine mail , Erfanul Hoque Bahadur mail , Abdul Kadar Muhammad Masum mail , Mercedes Briones Urbano mail mercedes.briones@uneatlantico.es, Manuel Masías Vergara mail manuel.masias@uneatlantico.es, Jia Uddin mail , Imran Ashraf mail , Md. Abdus Samad mail ,
Alam
<a class="ep_document_link" href="/14278/1/s41746-024-01194-6.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Emergency medical services (EMSs) face critical situations that require patient risk classification based on analytical and vital signs. We aimed to establish clustering-derived phenotypes based on prehospital analytical and vital signs that allow risk stratification. This was a prospective, multicenter, EMS-delivered, ambulance-based cohort study considering six advanced life support units, 38 basic life support units, and four tertiary hospitals in Spain. Adults with unselected acute diseases managed by the EMS and evacuated with discharge priority to emergency departments were considered between January 1, 2020, and June 30, 2023. Prehospital point-of-care testing and on-scene vital signs were used for the unsupervised machine learning method (clustering) to determine the phenotypes. Then phenotypes were compared with the primary outcome (cumulative mortality (all-cause) at 2, 7, and 30 days). A total of 7909 patients were included. The median (IQR) age was 64 (51–80) years, 41% were women, and 26% were living in rural areas. Three clusters were identified: alpha 16.2% (1281 patients), beta 28.8% (2279), and gamma 55% (4349). The mortality rates for alpha, beta and gamma at 2 days were 18.6%, 4.1%, and 0.8%, respectively; at 7 days, were 24.7%, 6.2%, and 1.7%; and at 30 days, were 33%, 10.2%, and 3.2%, respectively. Based on standard vital signs and blood test biomarkers in the prehospital scenario, three clusters were identified: alpha (high-risk), beta and gamma (medium- and low-risk, respectively). This permits the EMS system to quickly identify patients who are potentially compromised and to proactively implement the necessary interventions.
Raúl López-Izquierdo mail , Carlos del Pozo Vegas mail , Ancor Sanz-García mail , Agustín Mayo Íscar mail , Miguel A. Castro Villamor mail , Eduardo René Silva Alvarado mail eduardo.silva@funiber.org, Santos Gracia Villar mail santos.gracia@uneatlantico.es, Luis Alonso Dzul López mail luis.dzul@uneatlantico.es, Silvia Aparicio Obregón mail silvia.aparicio@uneatlantico.es, Rubén Calderón Iglesias mail ruben.calderon@uneatlantico.es, Joan B. Soriano mail , Francisco Martín-Rodríguez mail ,
López-Izquierdo