Artículo Materias > Ingeniería Universidad Europea del Atlántico > Investigación > Producción Científica
Fundación Universitaria Internacional de Colombia > Investigación > Artículos y libros
Universidad Internacional Iberoamericana México > Investigación > Producción Científica
Universidad Internacional Iberoamericana Puerto Rico > Investigación > Producción Científica
Universidad Internacional do Cuanza > Investigación > Producción Científica
Abierto Inglés In the field of natural language processing, machine translation is a colossally developing research area that helps humans communicate more effectively by bridging the linguistic gap. In machine translation, normalization and morphological analyses are the first and perhaps the most important modules for information retrieval (IR). To build a morphological analyzer, or to complete the normalization process, it is important to extract the correct root out of different words. Stemming and lemmatization are techniques commonly used to find the correct root words in a language. However, a few studies on IR systems for the Urdu language have shown that lemmatization is more effective than stemming due to infixes found in Urdu words. This paper presents a lemmatization algorithm based on recurrent neural network models for the Urdu language. However, lemmatization techniques for resource-scarce languages such as Urdu are not very common. The proposed model is trained and tested on two datasets, namely, the Urdu Monolingual Corpus (UMC) and the Universal Dependencies Corpus of Urdu (UDU). The datasets are lemmatized with the help of recurrent neural network models. The Word2Vec model and edit trees are used to generate semantic and syntactic embedding. Bidirectional long short-term memory (BiLSTM), bidirectional gated recurrent unit (BiGRU), bidirectional gated recurrent neural network (BiGRNN), and attention-free encoder–decoder (AFED) models are trained under defined hyperparameters. Experimental results show that the attention-free encoder-decoder model achieves an accuracy, precision, recall, and F-score of 0.96, 0.95, 0.95, and 0.95, respectively, and outperforms existing models metadata Hafeez, Rabab; Anwar, Muhammad Waqas; Jamal, Muhammad Hasan; Fatima, Tayyaba; Martínez Espinosa, Julio César; Dzul López, Luis Alonso; Bautista Thompson, Ernesto y Ashraf, Imran mail SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, SIN ESPECIFICAR, ulio.martinez@unini.edu.mx, luis.dzul@uneatlantico.es, ernesto.bautista@unini.edu.mx, SIN ESPECIFICAR (2023) Contextual Urdu Lemmatization Using Recurrent Neural Network Models. Mathematics, 11 (2). p. 435. ISSN 2227-7390