Spare Parts Forecasting and Lumpiness Classification Using Neural Network Model and Its Impact on Aviation Safety
Article
Subjects > Engineering
Europe University of Atlantic > Research > Scientific Production
Fundación Universitaria Internacional de Colombia > Research > Articles and books
Ibero-american International University > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Universidad Internacional do Cuanza > Research > Scientific Production
Abierto
Inglés
Safety critical spare parts hold special importance for aviation organizations. However, accurate forecasting of such parts becomes challenging when the data are lumpy or intermittent. This research paper proposes an artificial neural network (ANN) model that is able to observe the recent trends of error surface and responds efficiently to the local gradient for precise spare prediction results marked by lumpiness. Introduction of the momentum term allows the proposed ANN model to ignore small variations in the error surface and to behave like a low-pass filter and thus to avoid local minima. Using the whole collection of aviation spare parts having the highest demand activity, an ANN model is built to predict the failure of aircraft installed parts. The proposed model is first optimized for its topology and is later trained and validated with known historical demand datasets. The testing phase includes introducing input vector comprising influential factors that dictate sporadic demand. The proposed approach is found to provide superior results due to its simple architecture and fast converging training algorithm once evaluated against some other state-of-the-art models from the literature using related benchmark performance criteria. The experimental results demonstrate the effectiveness of the proposed approach. The accurate prediction of the cost-heavy and critical spare parts is expected to result in huge cost savings, reduce downtime, and improve the operational readiness of drones, fixed wing aircraft and helicopters. This also resolves the dead inventory issue as a result of wrong demands of fast moving spares due to human error.
metadata
Shafi, Imran and Sohail, Amir and Ahmad, Jamil and Martínez Espinosa, Julio César and Dzul Lopez, Luis Alonso and Bautista Thompson, Ernesto and Ashraf, Imran
mail
UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, luis.dzul@unini.edu.mx, ernesto.bautista@unini.edu.mx, UNSPECIFIED
(2023)
Spare Parts Forecasting and Lumpiness Classification Using Neural Network Model and Its Impact on Aviation Safety.
Applied Sciences, 13 (9).
p. 5475.
ISSN 2076-3417
Text
applsci-13-05475-v2.pdf Available under License Creative Commons Attribution. Download (660kB) |
Abstract
Safety critical spare parts hold special importance for aviation organizations. However, accurate forecasting of such parts becomes challenging when the data are lumpy or intermittent. This research paper proposes an artificial neural network (ANN) model that is able to observe the recent trends of error surface and responds efficiently to the local gradient for precise spare prediction results marked by lumpiness. Introduction of the momentum term allows the proposed ANN model to ignore small variations in the error surface and to behave like a low-pass filter and thus to avoid local minima. Using the whole collection of aviation spare parts having the highest demand activity, an ANN model is built to predict the failure of aircraft installed parts. The proposed model is first optimized for its topology and is later trained and validated with known historical demand datasets. The testing phase includes introducing input vector comprising influential factors that dictate sporadic demand. The proposed approach is found to provide superior results due to its simple architecture and fast converging training algorithm once evaluated against some other state-of-the-art models from the literature using related benchmark performance criteria. The experimental results demonstrate the effectiveness of the proposed approach. The accurate prediction of the cost-heavy and critical spare parts is expected to result in huge cost savings, reduce downtime, and improve the operational readiness of drones, fixed wing aircraft and helicopters. This also resolves the dead inventory issue as a result of wrong demands of fast moving spares due to human error.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | lumpy demand forecasting; aviation; machine learning; spare part demand prediction |
Subjects: | Subjects > Engineering |
Divisions: | Europe University of Atlantic > Research > Scientific Production Fundación Universitaria Internacional de Colombia > Research > Articles and books Ibero-american International University > Research > Scientific Production Ibero-american International University > Research > Scientific Production Universidad Internacional do Cuanza > Research > Scientific Production |
Date Deposited: | 05 May 2023 23:30 |
Last Modified: | 21 Oct 2024 23:30 |
URI: | https://repositorio.unincol.edu.co/id/eprint/6976 |
Actions (login required)
View Item |
<a class="ep_document_link" href="/15333/1/nutrients-16-03907.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Background/Objectives: The diet quality of younger individuals is decreasing globally, with alarming trends also in the Mediterranean region. The aim of this study was to assess diet quality and adequacy in relation to country-specific dietary recommendations for children and adolescents living in the Mediterranean area. Methods: A cross-sectional survey was conducted of 2011 parents of the target population participating in the DELICIOUS EU-PRIMA project. Dietary data and cross-references with food-based recommendations and the application of the youth healthy eating index (YHEI) was assessed through 24 h recalls and food frequency questionnaires. Results: Adherence to recommendations on plant-based foods was low (less than ∼20%), including fruit and vegetables adequacy in all countries, legume adequacy in all countries except for Italy, and cereal adequacy in all countries except for Portugal. For animal products and dietary fats, the adequacy in relation to the national food-based dietary recommendations was slightly better (∼40% on average) in most countries, although the Eastern countries reported worse rates. Higher scores on the YHEI predicted adequacy in relation to vegetables (except Egypt), fruit (except Lebanon), cereals (except Spain), and legumes (except Spain) in most countries. Younger children (p < 0.005) reporting having 8–10 h adequate sleep duration (p < 0.001), <2 h/day screen time (p < 0.001), and a medium/high physical activity level (p < 0.001) displayed a better diet quality. Moreover, older respondents (p < 0.001) with a medium/high educational level (p = 0.001) and living with a partner (p = 0.003) reported that their children had a better diet quality. Conclusions: Plant-based food groups, including fruit, vegetables, legumes, and even (whole-grain) cereals are underrepresented in the diets of Mediterranean children and adolescents. Moreover, the adequate consumption of other important dietary components, such as milk and dairy products, is rather disregarded, leading to substantially suboptimal diets and poor adequacy in relation to dietary guidelines.
Francesca Giampieri mail francesca.giampieri@uneatlantico.es, Alice Rosi mail , Francesca Scazzina mail , Evelyn Frias-Toral mail , Osama Abdelkarim mail , Mohamed Aly mail , Raynier Zambrano-Villacres mail , Juancho Pons mail , Laura Vázquez-Araújo mail , Sandra Sumalla Cano mail sandra.sumalla@uneatlantico.es, Iñaki Elío Pascual mail inaki.elio@uneatlantico.es, Lorenzo Monasta mail , Ana Mata mail , María Isabel Pardo mail , Pablo Busó mail , Giuseppe Grosso mail ,
Giampieri
<a href="/14584/1/s41598-024-73664-6.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
The evolution of the COVID-19 pandemic has been associated with variations in clinical presentation and severity. Similarly, prediction scores may suffer changes in their diagnostic accuracy. The aim of this study was to test the 30-day mortality predictive validity of the 4C and SEIMC scores during the sixth wave of the pandemic and to compare them with those of validation studies. This was a longitudinal retrospective observational study. COVID-19 patients who were admitted to the Emergency Department of a Spanish hospital from December 15, 2021, to January 31, 2022, were selected. A side-by-side comparison with the pivotal validation studies was subsequently performed. The main measures were 30-day mortality and the 4C and SEIMC scores. A total of 27,614 patients were considered in the study, including 22,361 from the 4C, 4,627 from the SEIMC and 626 from our hospital. The 30-day mortality rate was significantly lower than that reported in the validation studies. The AUCs were 0.931 (95% CI: 0.90–0.95) for 4C and 0.903 (95% CI: 086–0.93) for SEIMC, which were significantly greater than those obtained in the first wave. Despite the changes that have occurred during the coronavirus disease 2019 (COVID-19) pandemic, with a reduction in lethality, scorecard systems are currently still useful tools for detecting patients with poor disease risk, with better prognostic capacity.
Pedro Ángel de Santos Castro mail , Carlos del Pozo Vegas mail , Leyre Teresa Pinilla Arribas mail , Daniel Zalama Sánchez mail , Ancor Sanz-García mail , Tony Giancarlo Vásquez del Águila mail , Pablo González Izquierdo mail , Sara de Santos Sánchez mail , Cristina Mazas Pérez-Oleaga mail cristina.mazas@uneatlantico.es, Irma Dominguez Azpíroz mail irma.dominguez@unini.edu.mx, Iñaki Elío Pascual mail inaki.elio@uneatlantico.es, Francisco Martín-Rodríguez mail ,
de Santos Castro
<a class="ep_document_link" href="/14950/1/fmicb-15-1481418.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Background: The 2023 dengue outbreak has proven that dengue is not only an endemic disease but also an emerging health threat in Bangladesh. Integrated studies on the epidemiology, clinical characteristics, seasonality, and genotype of dengue are limited. This study was conducted to determine recent trends in the molecular epidemiology, clinical features, and seasonality of dengue outbreaks. Methods: We analyzed data from 41 original studies, extracting epidemiological information from all 41 articles, clinical symptoms from 30 articles, and genotypic diversity from 11 articles. The study adhered to the standards of the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) Statement and Cochrane Collaboration guidelines. Conclusion: This study provides integrated insights into the molecular epidemiology, clinical features, seasonality, and transmission of dengue in Bangladesh and highlights research gaps for future studies.
Nadim Sharif mail , Rubayet Rayhan Opu mail , Tama Saha mail , Abdullah Ibna Masud mail , Jannatin Naim mail , Khalaf F. Alsharif mail , Khalid J. Alzahrani mail , Eduardo René Silva Alvarado mail eduardo.silva@funiber.org, Irene Delgado Noya mail irene.delgado@uneatlantico.es, Isabel De la Torre Díez mail , Shuvra Kanti Dey mail ,
Sharif
<a href="/14282/1/s40537-024-00959-w.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Non-Insulin-Dependent Diabetes Mellitus (NIDDM) is a chronic health condition caused by high blood sugar levels, and if not treated early, it can lead to serious complications i.e. blindness. Human Activity Recognition (HAR) offers potential for early NIDDM diagnosis, emerging as a key application for HAR technology. This research introduces DiabSense, a state-of-the-art smartphone-dependent system for early staging of NIDDM. DiabSense incorporates HAR and Diabetic Retinopathy (DR) upon leveraging the power of two different Graph Neural Networks (GNN). HAR uses a comprehensive array of 23 human activities resembling Diabetes symptoms, and DR is a prevalent complication of NIDDM. Graph Attention Network (GAT) in HAR achieved 98.32% accuracy on sensor data, while Graph Convolutional Network (GCN) in the Aptos 2019 dataset scored 84.48%, surpassing other state-of-the-art models. The trained GCN analyzed retinal images of four experimental human subjects for DR report generation, and GAT generated their average duration of daily activities over 30 days. The daily activities in non-diabetic periods of diabetic patients were measured and compared with the daily activities of the experimental subjects, which helped generate risk factors. Fusing risk factors with DR conditions enabled early diagnosis recommendations for the experimental subjects despite the absence of any apparent symptoms. The comparison of DiabSense system outcome with clinical diagnosis reports in the experimental subjects was conducted using the A1C test. The test results confirmed the accurate assessment of early diagnosis requirements for experimental subjects by the system. Overall, DiabSense exhibits significant potential for ensuring early NIDDM treatment, improving millions of lives worldwide.
Md Nuho Ul Alam mail , Ibrahim Hasnine mail , Erfanul Hoque Bahadur mail , Abdul Kadar Muhammad Masum mail , Mercedes Briones Urbano mail mercedes.briones@uneatlantico.es, Manuel Masías Vergara mail manuel.masias@uneatlantico.es, Jia Uddin mail , Imran Ashraf mail , Md. Abdus Samad mail ,
Alam
<a href="/14278/1/s41746-024-01194-6.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>
en
open
Emergency medical services (EMSs) face critical situations that require patient risk classification based on analytical and vital signs. We aimed to establish clustering-derived phenotypes based on prehospital analytical and vital signs that allow risk stratification. This was a prospective, multicenter, EMS-delivered, ambulance-based cohort study considering six advanced life support units, 38 basic life support units, and four tertiary hospitals in Spain. Adults with unselected acute diseases managed by the EMS and evacuated with discharge priority to emergency departments were considered between January 1, 2020, and June 30, 2023. Prehospital point-of-care testing and on-scene vital signs were used for the unsupervised machine learning method (clustering) to determine the phenotypes. Then phenotypes were compared with the primary outcome (cumulative mortality (all-cause) at 2, 7, and 30 days). A total of 7909 patients were included. The median (IQR) age was 64 (51–80) years, 41% were women, and 26% were living in rural areas. Three clusters were identified: alpha 16.2% (1281 patients), beta 28.8% (2279), and gamma 55% (4349). The mortality rates for alpha, beta and gamma at 2 days were 18.6%, 4.1%, and 0.8%, respectively; at 7 days, were 24.7%, 6.2%, and 1.7%; and at 30 days, were 33%, 10.2%, and 3.2%, respectively. Based on standard vital signs and blood test biomarkers in the prehospital scenario, three clusters were identified: alpha (high-risk), beta and gamma (medium- and low-risk, respectively). This permits the EMS system to quickly identify patients who are potentially compromised and to proactively implement the necessary interventions.
Raúl López-Izquierdo mail , Carlos del Pozo Vegas mail , Ancor Sanz-García mail , Agustín Mayo Íscar mail , Miguel A. Castro Villamor mail , Eduardo René Silva Alvarado mail eduardo.silva@funiber.org, Santos Gracia Villar mail santos.gracia@uneatlantico.es, Luis Alonso Dzul López mail luis.dzul@uneatlantico.es, Silvia Aparicio Obregón mail silvia.aparicio@uneatlantico.es, Rubén Calderón Iglesias mail ruben.calderon@uneatlantico.es, Joan B. Soriano mail , Francisco Martín-Rodríguez mail ,
López-Izquierdo