Impact of Innovation-Oriented Human Resource on Small and Medium Enterprises’ Performance

Article Subjects > Engineering Universidad Internacional do Cuanza > Research > Scientific Production
Europe University of Atlantic > Research > Scientific Production
Fundación Universitaria Internacional de Colombia > Research > Articles and books
Ibero-american International University > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Abierto Inglés This research paper aims to examine the impact of innovative HRM practices, including employee participation, performance appraisal, reward and compensation, recruitment and selection, and redeployment–retraining on firm performance. For this purpose, four different models are utilized to examine the impact of innovative HRM department practices on the performance of small and medium enterprises (SMEs) in a country. The dependent variable, firm performance, is proxified by different variables such as labor productivity, product innovation, process innovation, and marketing innovation. For empirical analysis, primary data are collected using a questionnaire. Estimation is conducted using ordinary least squares (OLS) and logit regression techniques. The estimated results indicate that most innovative HRM practices have a statistically significant impact on firm performance in terms of labor productivity, product, process, and marketing innovations. These results imply that SMEs in a country may observe the benefits of devoting greater attention to innovative HRM practices to achieve their future growth potential. metadata Aslam, Mahvish and Shafi, Imran and Ahmed, Jamil and Garat de Marin, Mirtha Silvana and Soriano Flores, Emmanuel and Rojo Gutiérrez, Marco Antonio and Ashraf, Imran mail UNSPECIFIED, UNSPECIFIED, UNSPECIFIED, silvana.marin@uneatlantico.es, emmanuel.soriano@uneatlantico.es, marco.rojo@unini.edu.mx, UNSPECIFIED (2023) Impact of Innovation-Oriented Human Resource on Small and Medium Enterprises’ Performance. Sustainability, 15 (7). p. 6273. ISSN 2071-1050

[img] Text
sustainability-15-06273.pdf
Available under License Creative Commons Attribution.

Download (407kB)

Abstract

This research paper aims to examine the impact of innovative HRM practices, including employee participation, performance appraisal, reward and compensation, recruitment and selection, and redeployment–retraining on firm performance. For this purpose, four different models are utilized to examine the impact of innovative HRM department practices on the performance of small and medium enterprises (SMEs) in a country. The dependent variable, firm performance, is proxified by different variables such as labor productivity, product innovation, process innovation, and marketing innovation. For empirical analysis, primary data are collected using a questionnaire. Estimation is conducted using ordinary least squares (OLS) and logit regression techniques. The estimated results indicate that most innovative HRM practices have a statistically significant impact on firm performance in terms of labor productivity, product, process, and marketing innovations. These results imply that SMEs in a country may observe the benefits of devoting greater attention to innovative HRM practices to achieve their future growth potential.

Item Type: Article
Uncontrolled Keywords: human resource management; human factors; small and medium enterprises; innovation
Subjects: Subjects > Engineering
Divisions: Universidad Internacional do Cuanza > Research > Scientific Production
Europe University of Atlantic > Research > Scientific Production
Fundación Universitaria Internacional de Colombia > Research > Articles and books
Ibero-american International University > Research > Scientific Production
Ibero-american International University > Research > Scientific Production
Date Deposited: 24 Jan 2024 23:30
Last Modified: 24 Jan 2024 23:30
URI: https://repositorio.unincol.edu.co/id/eprint/6773

Actions (login required)

View Item View Item

<a class="ep_document_link" href="/14584/1/s41598-024-73664-6.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Performance of the 4C and SEIMC scoring systems in predicting mortality from onset to current COVID-19 pandemic in emergency departments

The evolution of the COVID-19 pandemic has been associated with variations in clinical presentation and severity. Similarly, prediction scores may suffer changes in their diagnostic accuracy. The aim of this study was to test the 30-day mortality predictive validity of the 4C and SEIMC scores during the sixth wave of the pandemic and to compare them with those of validation studies. This was a longitudinal retrospective observational study. COVID-19 patients who were admitted to the Emergency Department of a Spanish hospital from December 15, 2021, to January 31, 2022, were selected. A side-by-side comparison with the pivotal validation studies was subsequently performed. The main measures were 30-day mortality and the 4C and SEIMC scores. A total of 27,614 patients were considered in the study, including 22,361 from the 4C, 4,627 from the SEIMC and 626 from our hospital. The 30-day mortality rate was significantly lower than that reported in the validation studies. The AUCs were 0.931 (95% CI: 0.90–0.95) for 4C and 0.903 (95% CI: 086–0.93) for SEIMC, which were significantly greater than those obtained in the first wave. Despite the changes that have occurred during the coronavirus disease 2019 (COVID-19) pandemic, with a reduction in lethality, scorecard systems are currently still useful tools for detecting patients with poor disease risk, with better prognostic capacity.

Producción Científica

Pedro Ángel de Santos Castro mail , Carlos del Pozo Vegas mail , Leyre Teresa Pinilla Arribas mail , Daniel Zalama Sánchez mail , Ancor Sanz-García mail , Tony Giancarlo Vásquez del Águila mail , Pablo González Izquierdo mail , Sara de Santos Sánchez mail , Cristina Mazas Pérez-Oleaga mail cristina.mazas@uneatlantico.es, Irma Dominguez Azpíroz mail irma.dominguez@unini.edu.mx, Iñaki Elío Pascual mail inaki.elio@uneatlantico.es, Francisco Martín-Rodríguez mail ,

de Santos Castro

<a class="ep_document_link" href="/14950/1/fmicb-15-1481418.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Evolving epidemiology, clinical features, and genotyping of dengue outbreaks in Bangladesh, 2000–2024: a systematic review

Background: The 2023 dengue outbreak has proven that dengue is not only an endemic disease but also an emerging health threat in Bangladesh. Integrated studies on the epidemiology, clinical characteristics, seasonality, and genotype of dengue are limited. This study was conducted to determine recent trends in the molecular epidemiology, clinical features, and seasonality of dengue outbreaks. Methods: We analyzed data from 41 original studies, extracting epidemiological information from all 41 articles, clinical symptoms from 30 articles, and genotypic diversity from 11 articles. The study adhered to the standards of the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) Statement and Cochrane Collaboration guidelines. Conclusion: This study provides integrated insights into the molecular epidemiology, clinical features, seasonality, and transmission of dengue in Bangladesh and highlights research gaps for future studies.

Producción Científica

Nadim Sharif mail , Rubayet Rayhan Opu mail , Tama Saha mail , Abdullah Ibna Masud mail , Jannatin Naim mail , Khalaf F. Alsharif mail , Khalid J. Alzahrani mail , Eduardo René Silva Alvarado mail eduardo.silva@funiber.org, Irene Delgado Noya mail irene.delgado@uneatlantico.es, Isabel De la Torre Díez mail , Shuvra Kanti Dey mail ,

Sharif

<a href="/14282/1/s40537-024-00959-w.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

DiabSense: early diagnosis of non-insulin-dependent diabetes mellitus using smartphone-based human activity recognition and diabetic retinopathy analysis with Graph Neural Network

Non-Insulin-Dependent Diabetes Mellitus (NIDDM) is a chronic health condition caused by high blood sugar levels, and if not treated early, it can lead to serious complications i.e. blindness. Human Activity Recognition (HAR) offers potential for early NIDDM diagnosis, emerging as a key application for HAR technology. This research introduces DiabSense, a state-of-the-art smartphone-dependent system for early staging of NIDDM. DiabSense incorporates HAR and Diabetic Retinopathy (DR) upon leveraging the power of two different Graph Neural Networks (GNN). HAR uses a comprehensive array of 23 human activities resembling Diabetes symptoms, and DR is a prevalent complication of NIDDM. Graph Attention Network (GAT) in HAR achieved 98.32% accuracy on sensor data, while Graph Convolutional Network (GCN) in the Aptos 2019 dataset scored 84.48%, surpassing other state-of-the-art models. The trained GCN analyzed retinal images of four experimental human subjects for DR report generation, and GAT generated their average duration of daily activities over 30 days. The daily activities in non-diabetic periods of diabetic patients were measured and compared with the daily activities of the experimental subjects, which helped generate risk factors. Fusing risk factors with DR conditions enabled early diagnosis recommendations for the experimental subjects despite the absence of any apparent symptoms. The comparison of DiabSense system outcome with clinical diagnosis reports in the experimental subjects was conducted using the A1C test. The test results confirmed the accurate assessment of early diagnosis requirements for experimental subjects by the system. Overall, DiabSense exhibits significant potential for ensuring early NIDDM treatment, improving millions of lives worldwide.

Producción Científica

Md Nuho Ul Alam mail , Ibrahim Hasnine mail , Erfanul Hoque Bahadur mail , Abdul Kadar Muhammad Masum mail , Mercedes Briones Urbano mail mercedes.briones@uneatlantico.es, Manuel Masías Vergara mail manuel.masias@uneatlantico.es, Jia Uddin mail , Imran Ashraf mail , Md. Abdus Samad mail ,

Alam

<a class="ep_document_link" href="/14278/1/s41746-024-01194-6.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Clinical phenotypes and short-term outcomes based on prehospital point-of-care testing and on-scene vital signs

Emergency medical services (EMSs) face critical situations that require patient risk classification based on analytical and vital signs. We aimed to establish clustering-derived phenotypes based on prehospital analytical and vital signs that allow risk stratification. This was a prospective, multicenter, EMS-delivered, ambulance-based cohort study considering six advanced life support units, 38 basic life support units, and four tertiary hospitals in Spain. Adults with unselected acute diseases managed by the EMS and evacuated with discharge priority to emergency departments were considered between January 1, 2020, and June 30, 2023. Prehospital point-of-care testing and on-scene vital signs were used for the unsupervised machine learning method (clustering) to determine the phenotypes. Then phenotypes were compared with the primary outcome (cumulative mortality (all-cause) at 2, 7, and 30 days). A total of 7909 patients were included. The median (IQR) age was 64 (51–80) years, 41% were women, and 26% were living in rural areas. Three clusters were identified: alpha 16.2% (1281 patients), beta 28.8% (2279), and gamma 55% (4349). The mortality rates for alpha, beta and gamma at 2 days were 18.6%, 4.1%, and 0.8%, respectively; at 7 days, were 24.7%, 6.2%, and 1.7%; and at 30 days, were 33%, 10.2%, and 3.2%, respectively. Based on standard vital signs and blood test biomarkers in the prehospital scenario, three clusters were identified: alpha (high-risk), beta and gamma (medium- and low-risk, respectively). This permits the EMS system to quickly identify patients who are potentially compromised and to proactively implement the necessary interventions.

Producción Científica

Raúl López-Izquierdo mail , Carlos del Pozo Vegas mail , Ancor Sanz-García mail , Agustín Mayo Íscar mail , Miguel A. Castro Villamor mail , Eduardo René Silva Alvarado mail eduardo.silva@funiber.org, Santos Gracia Villar mail santos.gracia@uneatlantico.es, Luis Alonso Dzul López mail luis.dzul@uneatlantico.es, Silvia Aparicio Obregón mail silvia.aparicio@uneatlantico.es, Rubén Calderón Iglesias mail ruben.calderon@uneatlantico.es, Joan B. Soriano mail , Francisco Martín-Rodríguez mail ,

López-Izquierdo

<a class="ep_document_link" href="/14344/1/journal.pone.0304774.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Novel model to authenticate role-based medical users for blockchain-based IoMT devices

The IoT (Internet of Things) has played a promising role in e-healthcare applications during the last decade. Medical sensors record a variety of data and transmit them over the IoT network to facilitate remote patient monitoring. When a patient visits a hospital he may need to connect or disconnect medical devices from the medical healthcare system frequently. Also, multiple entities (e.g., doctors, medical staff, etc.) need access to patient data and require distinct sets of patient data. As a result of the dynamic nature of medical devices, medical users require frequent access to data, which raises complex security concerns. Granting access to a whole set of data creates privacy issues. Also, each of these medical user need to grant access rights to a specific set of medical data, which is quite a tedious task. In order to provide role-based access to medical users, this study proposes a blockchain-based framework for authenticating multiple entities based on the trust domain to reduce the administrative burden. This study is further validated by simulation on the infura blockchain using solidity and Python. The results demonstrate that role-based authorization and multi-entities authentication have been implemented and the owner of medical data can control access rights at any time and grant medical users easy access to a set of data in a healthcare system. The system has minimal latency compared to existing blockchain systems that lack multi-entity authentication and role-based authorization.

Producción Científica

Shadab Alam mail , Muhammad Shehzad Aslam mail , Ayesha Altaf mail , Faiza Iqbal mail , Natasha Nigar mail , Juan Castanedo Galán mail juan.castanedo@uneatlantico.es, Daniel Gavilanes Aray mail daniel.gavilanes@uneatlantico.es, Isabel de la Torre Díez mail , Imran Ashraf mail ,

Alam