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Simple Summary: Breast cancer is prevalent in women and the second leading cause of death.
Conventional breast cancer detection methods require several laboratory tests and medical experts.
Automated breast cancer detection is thus very important for timely treatment. This study explores
the influence of various feature selection technique to increase the performance of machine learning
methods for breast cancer detection. Experimental results shows that use of appropriate features tend
to show highly accurate prediction.

Abstract: Breast cancer is one of the most common invasive cancers in women and it continues to be
a worldwide medical problem since the number of cases has significantly increased over the past
decade. Breast cancer is the second leading cause of death from cancer in women. The early detection
of breast cancer can save human life but the traditional approach for detecting breast cancer disease
needs various laboratory tests involving medical experts. To reduce human error and speed up breast
cancer detection, an automatic system is required that would perform the diagnosis accurately and
timely. Despite the research efforts for automated systems for cancer detection, a wide gap exists
between the desired and provided accuracy of current approaches. To overcome this issue, this
research proposes an approach for breast cancer prediction by selecting the best fine needle aspiration
features. To enhance the prediction accuracy, several feature selection techniques are applied to
analyze their efficacy, such as principal component analysis, singular vector decomposition, and
chi-square (Chi2). Extensive experiments are performed with different features and different set
sizes of features to investigate the optimal feature set. Additionally, the influence of imbalanced and
balanced data using the SMOTE approach is investigated. Six classifiers including random forest,
support vector machine, gradient boosting machine, logistic regression, multilayer perceptron, and
K-nearest neighbors (KNN) are tuned to achieve increased classification accuracy. Results indicate
that KNN outperforms all other classifiers on the used dataset with 20 features using SVD and with
the 15 most important features using a PCA with a 100% accuracy score.

Keywords: breast cancer prediction; feature selection; fine-needle aspiration features; principal
component analysis; singular value decomposition; deep learning
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1. Introduction

Cancer has been among the top five diseases in women over many years; globally,
breast and cervical cancer have been regarded as the common cause of death from cancer
between the age of 15 to 65 years among women [1]. With nonmelanoma of the skin
excluded, breast cancer is the most often diagnosed cancer for women in the US. Compared
to lung cancer, it is the second most common cancer among women overall, but it is the
most common among Black and Hispanic women [2]. Breast cancer has been diagnosed
in both men and women, but the ratio of women is higher than in men. According to the
statistical report of the world cancer research fund (WCRF), approximately two million
new cases were registered for breast cancer in 2018 [3]. Asian countries especially, such as
Pakistan and India have the highest number of patients with breast cancer. According to a
report, approximately 178,388 new cases were registered in Pakistan in the year 2020 [4].
The highest number of reported deaths in one calendar year is for 2020 when 685,000 people
died worldwide as a result of breast cancer and 2.3 million women were affected. The
most common disease in the globe as of the end of 2020 was breast cancer, which had been
diagnosed in 7.8 million women in the previous five years [5].

Several risk factors are associated with breast cancer such as female sex, obesity, alcohol
use, hormone therapy during menopause, no or less physical activity, having children later
in life or not at all [6]. Several kinds of tumors can appear in various breast regions and are
broadly categorized as noninvasive and invasive. Noninvasive breast cancer cells stay in
the ducts and do not infiltrate the breast’s fatty and connective tissues. The majority (90%)
of noninvasive breast cancer cases are caused by ductal carcinoma in situ (DCIS). LCIS,
a less frequent condition, is thought to increase the chance of developing breast cancer.
Invasive breast cancer cells infect the breast’s surrounding fatty and connective tissues
by penetrating the duct and lobular walls. Without metastasis (spreading) to the lymph
nodes or other organs, cancer can be invasive. Thus, its timely prediction would make the
treatment possible at earlier stages and could save countless lives.

Early prediction of breast cancer is very important, but the conventional diagnosis
process is long and involves several medical tests once recommended by a medical expert.
It requires both time and money and often the prediction varies from one medical expert
to another. Therefore, an automated diagnosis system is highly desired to predict breast
cancer efficiently, timely, and accurately. Many traditional methods are used to diagnose
breast cancer such as mammography, ultrasound, and magnetic resonance imaging (MRI)
[7]. Predominantly, mammography and ultrasound are used to find the area affected by
cancer. These methods use screening platforms where radiology images (X-ray) of the
breast are taken and then analyzed by medical experts for diagnosis.

Another approach that can accurately identify breast cancer is fine-needle aspiration
(FNA), a kind of biopsy, to collect tissue and fluid samples from solid or cystic breast
lesions. It is one of the several methods for identifying breast lumps that are not removed
formally. Many research works used FNA features for various diseases of the breast using
datasets that comprise visually measured atomic features which are explained in [8]. For
this purpose, various attributes of FNAs such as texture, concaveness, smoothness, etc., are
used with machine and deep learning approaches. For example, the authors in [8] utilized
FNA features to predict breast cancer by using various machine learning approaches.
The use of a support vector machine (SVM) is reported to achieve 92.7% accuracy for
breast cancer prediction using FNA features. Similarly, the study [9] diagnosed breast
cancer by a new approach called RS-SVM (rough set–SVM) to remove redundant attributes
and improve accuracy. Despite previously presented diagnosis approaches, the desired
prediction accuracy and the achieved prediction accuracy do not agree. This research
aims to increase breast cancer prediction accuracy by analyzing various feature extraction
approaches for their efficacy. Additionally, the role of the size of various feature sets is
extensively investigated to find the optimal feature set for higher accuracy. In brief, this
study makes the following contributions:
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• An automated approach for breast cancer prediction is presented that utilizes fine
needle aspiration features. Based on FNA, patients are categorized into benign and
malignant.

• Various feature selection techniques such as principal component analysis (PCA),
singular value decomposition (SVD), and chi-square (Chi2), are analyzed for their
efficacy to select the best features from the dataset containing FNA features. Moreover,
the impact of different sizes of feature vectors on the prediction accuracy is extensively
investigated during several experiments.

• In addition to selecting important features, the impact of primary and derived features
is investigated for the breast cancer detection problem where several features are
derived from the primary features to increase the classification accuracy.

• Several machine learning algorithms are used for breast cancer prediction including
random forest (RF), SVM, gradient boosting machine (GBM), logistic regression (LG),
and k-nearest neighbors (KNN). Their performance is examined with various feature
selection techniques, as well as various feature vectors for increased accuracy.

• Several experiments are performed to investigate whether the addition of more fea-
tures is important or fewer features with high importance. Moreover, the performance
of the proposed approach is compared with several state-of-the-art approaches.

The rest of the paper is organized as follows. Section 2 discusses the research works
that are closely related to the current study. Section 3 gives a brief overview of the dataset,
feature selection techniques, the machine learning algorithms used in this study, as well as
the proposed methodology. Results are presented in Section 4 while the conclusion is given
in Section 5.

2. Related Work

Cancer, especially breast cancer, has been one of the leading causes of death in women
over the past few years. Several research works have been presented that use machine
learning algorithms to diagnose breast cancer at various levels. These works can be grouped
into two categories regarding the use of classifiers: machine learning classifiers and deep
learning classifiers. Machine learning classifiers include traditional classifiers such as SVM,
RF, logistic regression, etc., while the deep learning approaches focus on using neural
networks including long short-term memory, gated recurrent unit, convolutional neural
network, etc.

For example, the study [10] provided an analysis of various machine learning and
deep learning algorithms for breast cancer prediction. Deep learning algorithms such
as multilayer perceptron and neural networks (NN) with backpropagation gave the best
accuracy of 99.28%. Similarly, machine learning algorithms such as SVMs gave an accuracy
of 98.0%. In the same way, the authors in [11] used the relevance vector machine (RVM)
for breast cancer detection. Experiments were performed for various types of cancers
such as ovarian cancer, optical cancer, breast cancer, etc., where the RVM showed good
performance for the detection of ovarian and optical cancers.

Another study [12] used an ensemble approach for breast cancer detection where
various algorithms were used including C4.5, C5, CART, CHAID, SLIQ, SPRINT, and
ScalParc. These classifiers were selected based on their best performance for various
healthcare decision-support functions. The proposed approach was a hybrid solution
where feature selection and bagging technique was adopted. Three breast cancer datasets
were tested such as “breast cancer”, “Wisconsin breast cancer dataset (WBCD) original”, and
“WBCD diagnostic” for evaluating the performance of the proposed approach. The achieved
accuracy with the proposed approach was 74.47%, 97.85%, and 95.5%, respectively, for the
given datasets. The study [13] used three different classifiers from the WEKA software
for the classification of breast cancer. These techniques included a sequential minimal
optimization (SMO), a k-nearest neighbors classifier (IBK), and a best first tree (BF). Results
indicated that a better accuracy of 96.2% could be achieved using SMO for breast cancer
detection.



Cancers 2023, 15, 681 4 of 21

Many research works adopt deep learning approaches for breast cancer detection.
For example, the study [14] used neural networks for the classification of breast cancer.
Multiple statistical neural network structures including a self-organizing map (SOM), a
radial basis function network (RBF), a general regression neural network (GRNN), and a
probabilistic neural network (PNN) were tested on the WBCD and NHBCD datasets. The
PCA technique was also used to reduce the dimension of the data and find the best features.
An RBF and PNN were proven as the best classifiers in the training set, and for the test
set, a PNN gave the best classification accuracy. The overall results showed that the most
suitable neural network model for classifying WBCD and NHBCD data was the PNN. This
work also indicated that statistical neural networks could be effectively used for breast
cancer diagnosis to help the healthcare industry.

Similarly, the authors leveraged an artificial neural network for breast cancer detection
in [15]. Experiments were conducted using two different breast cancer datasets with
nuclear morphometric features. Results suggested that the ANN could successfully predict
recurrence probability. A comparative analysis of traditional machine learning classifiers
was performed in [16] on a breast cancer dataset. The study used an SVM, naive Bayes
classifier, and ANN for this purpose. Accuracy, sensitivity, and specificity results showed
that the SVM performed better with an accuracy of 97.67% on the WBCD and the “opinion
breast cancer problem”.

The authors proposed a hybrid method for the diagnosis of breast cancer by using
various machine learning techniques in [17]. This study combined a fuzzy artificial immune
system with a k-nearest neighbors classifier and evaluated its performance on the WBCD
dataset. The best accuracy (91.4%) was given by the purposed hybrid model with a
10-fold cross-validation. The study [18] presented a novel approach to breast cancer
diagnosis. An artificial neural network was evolved into an optimal architecture. For this,
a genetically optimized neural network model (GONN) was used which was based on
genetic programming. The GONN was compared with a BPNN and Koza’s models. The
maximum accuracy of 99.63% was achieved using the GONN. Similarly, a new model for
the classification of breast cancer was introduced in [19]. The model was based on the
naïve Bayes theorem and proved to be more accurate than traditional machine learning
classifiers.

Table 1 shows the summary of the research works discussed in this section. Despite the
reported breast cancer detection accuracy, these works lack several aspects. First, the major-
ity of the research works focus on tuning the machine or deep learning hyperparameters
to improve the classification performance of the models. This approach is appropriate for
one dataset, however, changing the dataset will change the classification results. Secondly,
feature selection which is very important for attaining accuracy and precision is not exten-
sively studied. Selecting important features helps to increase the classification accuracy on
multiple datasets and the generalization of the results. To this end, this research primarily
focuses on the selection of important features to increase breast cancer detection accuracy.

Table 1. Summary of the discussed research works.

Ref. Year Model/Techniques Dataset

[15] 2007 ANN WPBC and Love data

[14] 2010 SOM, RBF, GRNN, PNN, PCA WBCD and NHBCD

[12] 2012 C4.5, C5, CART, CHAID, SLIQ, SPRINT, ScalParc WBCD

[10] 2013 MLP, SVM, RVM WBCD

[16] 2014 SVM, naïve Bayes, ANN WBCD

[13] 2017 SMO, IBK, BF WBCD

[17] 2017 Fuzzy artificial immune system, k-nearest neigh-
bors, 10-fold cross-validation

WBCD
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3. Material and Methods
3.1. Dataset Description

The dataset used for the experiments was taken from Kaggle and is available at [20].
The dataset contained two types of features i.e., categorical and numerical. The values of the
features were taken from a process called a fine-needle aspiration (FNA) [21]. In an FNA, a
needle is injected into the abnormal body mass or tissue, which is later analyzed for various
indicators. The dataset contained 659 records with each record having 30 features and 2
target classes “benign” and “malignant”. Each feature had a real value which represented
an attribute to decide whether the person was healthy or a patient. The features were
calculated using the data from the tissue extracted from the body of the person using the
FNA procedure. The selected dataset had three values for each attribute including mean,
standard error, and maximum value. Table 2 shows the name of various attributes and
associated values.

Table 2. List of attributes and their measured values after the fine-needle inspiration process.

Attribute Name Attribute Description b St. Error Max

Radius Mean distances from the cen-
ter to the points on the perime-
ter

6.97–28.12 0.11–2.8 7.9–36.4

Texture Standard deviation of
grayscale values

9.72–39.27 0.36–4.8 12–49.5

Perimeter Real value 43.79–188.5 0.7–21.9 50–251

Area Real value 143.5–2501 6.8–542 185–424

Smoothness Local variation (in radius
lengths)

0.053–0.163 0.0–0.03 0.0–0.22

Compactness Formula to compute:
(perimeter2/area-1.0)

0.019–0.345 0.00–0.1 0.02–12

Concavity The severity of concave por-
tions of the contour

0.000–0.427 0.0–0.39 0.0–1.05

Concave points Number of concave portions
of the contour

0.000–0.201 0.0–0.05 0.0–0.29

Symmetry Real value 0.106–0.304 0.0–0.07 0.15–0.6

Fractal dimension (“coastline approximation”-1) 0.050–0.097 0.0–0.03 0.05–0.2

Ten attributes were selected from the dataset which had real values. The dataset had
two classes “Benign” and “Malignant” and the distribution of records for each class is
shown in Table 3.

Table 3. Data count for both classes in the dataset.

Data Training Testing Total

Benign 259 98 357

Malignant 167 45 212

Total 426 143 569

The distribution of the features for both classes is illustrated in Figure 1 using swarm plots.
For a clear illustration, fifteen features are displayed in Figures 1 and 2. Figures 1 and 2 show
the variance of various features regarding the target classes.
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For example, the value of “smoothness_se” in Figure 1 is mixed for malignant and
benign classes and it is very hard to classify the records using this feature. On the other
hand, “area_worst” in Figure 2 is linearly separable and holds the potential for classifying
the records. Because of these analyses, this study performed experiments with a varying
number of features, and several feature selection methods were added to the experiments
to select the best features for classification.

Figure 1. Representation of attributes 1–15 with respect to classes.

Figure 2. Representation of attributes 15–30 with respect to classes.

3.2. Feature Selection Techniques

Feature engineering is the process of extracting useful features from the raw data to
boost the machine learning models’ performance [22,23]. The used dataset contained 10
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attributes with each attribute having 3 features, yielding 30 features in total. Such features
comprised both primary and derived features. The original dataset contained the values
for the given 10 features alone while the mean, standard error, and max constituted the
derived features. It was obvious that all features were not good to train the classifiers and
important features needed to be selected.

For this purpose, three well-known feature selection approaches were used in this
study including principal component analysis (PCA), singular value decomposition (SVD),
and the Chi-square (Chi2) method.

3.2.1. Principal Component Analysis

The principal component analysis is a feature selection technique that selects a subset
of features that are more useful compared to all features in a dataset. A PCA selects the
best features measured using the percentage of consensus in a generalized Procrustes
analysis [24,25]. A PCA is used to find the important features based on the covariance
matrix [26] of the dataset which increases the performance of machine learning models. It
is used to resolve the curse of dimensionality among data with linear relationships. The
process of obtaining principal components from the raw dataset is done using

Cij =
1

n − 1

n

∑
m=1

(Xim − X̄i)(Xjm − X̄ j) (1)

where Cij is the covariance of variable i and j, and ∑ shows the sum of all objects. Xim is
the value of variable i in object m, i. Xjm is the value of variable j in object m and X̄i, X̄j
shows their mean.

3.2.2. Singular Value Decomposition

A singular value decomposition is often called matrix factorization [27] because it
is extensively used for matrix decomposition. It is commonly used in a wide array of
applications including data reduction, denoising, and compressing [28]. The SVD for the
data matrix X(m/n) can be factorized as

X = U ∗ D ∗ VT (2)

where U and V represent orthogonal matrices with orthonormal eigenvectors extracted
from XXT and XTX, respectively. The D is a diagonal matrix with r elements equal to the
root of the positive eigenvalues of XXT or XTX. It is represented as diag(D1, D2, D3. . . . Dn)
with singular vectors D1 > D2 > D3, . . . , Dn.

3.2.3. Chi-Square

The Chi-square feature selection technique is used to select the best features which are
highly dependent on the correlation between independent variables. When two features
are independent, the observed count is close to the expected count and the Chi2 value is
small. Thus, a high Chi2 value indicates that the hypothesis of independence is incorrect.
In other words, Chi2 is a statistical method used to determine the goodness of fit (GOF)
which refers to how close the observed are to those predicted from a hypothesis [29]. The
calculation of the Chi2 statistic is quite straightforward and intuitive:

x2 = ∑
( f0 − fc)2

fe
(3)

where fo is the observed frequency and fe is the expected frequency if no relationship
existed between the variables.

3.3. Supervised Machine Learning Algorithms

Machine learning applications in different domains such as image processing [30],
computer vision [31,32], health care [33], edge computing [34], the Internet of things
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(IoT) [35], etc., helping to make this world fully automated and smart. This study used
supervised machine learning models for the automatic detection of breast cancer using FNA
features. Five machine learning algorithms were selected for the experiments including RF,
SVM, GBM, LG, and KNN. These algorithms were refined using hyperparameter tuning
and the list of hyperparameters and their values used for the experiments are given in
Table 4.

Table 4. Hyperparameters and associate values used for experiments.

Model Hyperparameters

Random forest n_estimators = 100, max_depth = 50

Support vector machine kernel = linear, C = 3.0

Gradient boosting n_estimators = 100, max_depth = 50, learning_rate = 0.2

Logistic regression solver = liblinear, C = 3.0

3.3.1. Random Forest

A random forest is an ensemble model that uses several weak learners (decision trees)
to make a final prediction [36]. An RF consists of many decision trees to predict a new
instance, where each decision tree provides a prediction for the input data. An RF gathers
the predictions and chooses the most voted prediction as the final result. During the tree
generation, an RF searches for the best feature among the random subset of features [37].
This results in a higher tree diversity which trades a higher bias for a lower variance,
generally yielding an overall better model. An RF can be defined as

r f = modetree1, tree2, tree3, , , , treen (4)

r f = mode
N

∑
i=0

treei (5)

where tree1, tree2, tree3, . . . , treen are trees in the RF and N is the number of decision trees.
Several parameters are set for the RF to achieve refined results. For example, 100 is
commonly used as the n_estimators parameter, which represents the number of decision
trees the RF will generate. Similarly, 13 is commonly used as the max_depth parameter,
which defines the maximum depth to which each decision can grow. This parameter helps
to reduce the complexity of the decision tree, which is useful to avoid overfitting the model.

3.3.2. Support Vector Machine

A support vector machine is a supervised learning algorithm that can be used for
classification and regression problems. It is represented as support vector classification
(SVC) and support vector regression (SVR). It is used for smaller datasets as it requires a
longer processing time. It also tries to maximize the margin between the training data and
the classification boundary [38]. SVMs can be trained using stochastic gradient descent
(SGD) [39] which is defined as

dA
dβ

=
N

∑
i=1

{
i f (piyi < 1) yiXi

else 0
(6)

where the expression piyi < 1 tests whether the point Xi is nearer than the margin, and if
so, it adds it with sign yi. This forces the model to push it further out next time and ignore
other points. This SGD training method is much faster than the previous methods and
competitive with LR. It is also capable of training in less than one pass over a dataset.
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3.3.3. Gradient Boosting Machine

The gradient boosting machine first introduced by Friedman in 2001 is also known as
multiple additive regression trees (MART) and gradient boosted regression trees (GBRT)
[40,41]. Training using a GBM is sequential, gradual, and additive. In comparison to
AdaBoost, which identifies the shortcoming of weak learners using high-weight data
points, the GBM does the same by the loss function [42]. The loss function is defined as
[43].

Y = ax + b + e (7)

where e represents the error and shows the inexplicable data.
The loss function also indicates the fitting of underlying data showing how good the

model’s features are. One motivation for using gradient boosting is that it allows for the
optimization of user-specified cost functions rather than loss functions. The loss function
usually offers less control and has been regarded as unreliable for real-world applications.
Three hyperparameters are tuned for the GBM including n_estimators as 100, max_depth
parameters as 13, and learning_rate parameter as 0.2 to optimize the good fit of the model.

3.3.4. Logistic Regression (LR)

Logistic regression is one of the most widely used general-purpose models for both
classification and regression. LR is used for several problems such as spam filtering,
news message classification, website classification, product classification, and classification
problems with large and sparse feature sets [44–46]. The only problem with the LR is that it
can overfit very sparse data, so it is often used with regularization. LR maps the regression
value −Xβin(− ./, ./) to the range [0, 1] using a logistic function as

p(X) =
1

1 + exp(−Xβ)
(8)

The logistic function maps any value on the real line to a probability range i.e., [0, 1].
LR is a generalization of naïve Bayes with binary features. LR can model a naïve Bayes
classifier when the binary features are independent. Bayes’s rule for two classes c and d
can be defined as

Pr(cX) =
Pr(Xc)Pr(c)

Pr(X)
(9)

=
Pr(Xc)Pr(c)

Pr(XC)Pr(c) + Pr(Xd)Pr(d)
(10)

3.3.5. K-Nearest Neighbors

The k-nearest neighbors algorithm is a technique for classifying objects based on the
closest training samples in the problem space. KNN is a type of instance-based learning or
lazy learning where the function is only approximated locally, and all computations are
deferred until classification [47]. The k-nearest neighbors algorithm is among the simplest
of all machine learning algorithms, where an object is classified by a majority vote of its
neighbors. The object is assigned to the class which is most common among its k nearest
neighbors (k is a positive integer, typically small). If k = 1, the object is simply assigned to
the class of its nearest neighbor. The KNN algorithm can also be adapted for estimating
continuous variables. One such implementation uses an inverse distance weighted average
of the k-nearest multivariate neighbors. Research in [48] indicated that the performance of
the KNN method did not vary with the size of the target variable but with the type of data.
Additionally, a KNN classifier has proved to perform fairly well on smaller datasets such
as the Iris flower dataset where 3 classes are defined.
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3.4. Evaluation Measure

Evaluation measures are used to evaluate the performance of a model for its accuracy
and preciseness. Several measures have been presented over the years for classifiers but the
accuracy, precision, recall, and F1 measures are among the most commonly used evaluation
measures.

• Accuracy indicates how many labels out of the total labels are predicted correctly by
a classifier. For example, if the total number of testing examples is 100 for benign and
malignant samples and models correctly predict 80 examples out of 100, the accuracy
of the model will be 80%. The accuracy can be defined by

Accuracy =
TP + TN

TP + TN + FP + FN
(11)

where
True positive (TP): the actual class of the observation is benign and models also predict
it as benign.
True negative (TN): the actual class of the observation is malignant and models also
predict it as malignant.
False positive (FP): the actual class of the observation is malignant and models predict
it incorrectly as benign.
False negative (FN): the actual class of the observation is benign and models predict
it incorrectly as malignant.

• Recall is also known as sensitivity and can be defined as the ratio of the total number
of correctly predicted positive examples to the total number of positive examples. A
high value of recall indicates that the class is correctly recognized (a small number of
FNs).

Recall =
TP

TP + FN
(12)

• Precision is also known as the exactness of classifiers. Precision can also be defined as
the number of TPs divided by the number of TPs and FPs.

Precision =
TP

TP + FP
(13)

• F1 score is also known as the F measure and it is the harmonic mean of the precision
and recall scores. The F measure will always be nearer to the smaller value of precision
or recall. The F1 score can be defined as follows:

F1 score = 2 × Precision × Recall
Precision + Recall

(14)

3.5. Proposed Methodology

Figure 3 shows the pipeline of the proposed methodology for breast cancer detection.
Experiments were performed using two different approaches to analyze the impact of data
balance on accuracy. As shown in Table 3, the number of records for benign and malignant
classes was not equal, which caused a data imbalance and affected the learning process
of the classifier. To analyze the impact of data imbalance on classification accuracy, exper-
iments were performed using balanced data with SMOTE upsampling and imbalanced
data. For both courses of action, feature selection was performed with PCA, SVD, and Chi2
after splitting the data into training and testing sets with a 75:25 ratio. Machine learning
models including SVM, RF, GBM, LR, and KNN were trained on the training data and later,
the trained models were evaluated using the testing data.
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Dataset

Data Split

Training Set

Testing Set

Data Balancing Feature Extraction

Model Training

Trained Model

EvaluationFeature Extraction

Figure 3. The pipeline of the proposed methodology for breast cancer detection.

The performance of the selected classifiers was evaluated from three perspectives.
First, the performance using the testing data with the selected performance measures of
accuracy, precision, recall, and F1 score was assessed. Secondly the performance evaluation
was carried out with different feature sets such as 10 features, 20 features, and 30 features,
etc., to find the optimal feature set size for each classifier. In addition, the influence of
feature selection using the PCA, Chi2, and SVD feature selection approaches was evaluated.
Lastly, the performance of the selected machine learning classifier using the proposed
pipeline was compared with several state-of-the-art approaches for analyzing the striking
differences in classification accuracy.

4. Results and Discussions

Experiments were performed with an imbalanced dataset, as well as a balanced dataset
using the SMOTE approach. Results for each scenario are discussed separately.

4.1. Results Using Imbalanced Dataset
4.1.1. Performance of Classifiers without Feature Selection

First, experiments were performed with all the features from the data, and the feature
importance from PCA, SVD, and Chi2 was not used. It indicated all 30 features from the
dataset were used both for training and testing. The same train/test split ratio of 75:25 was
used for all experiments. Experimental results are given in Table 5. Results indicated that
using all features, the KNN classifier performed the best with an accuracy of 0.94 while the
GBM and LR classifiers performed poorly each with an accuracy of 0.91. The performance
of the MLP and RF was similar with an accuracy of 0.93.

Table 5. Classification results using all 30 features from the dataset.

Classifier Accuracy

RF 0.93

SVM 0.92

GBM 0.91

LR 0.91

MLP 0.93

KNN 0.94
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4.1.2. Performance of Classifiers Using Different Feature Sets

Further experiments were performed using various feature sets where the features
were selected using PCA, SVD, and Chi2. The number of features varied from 10 to 30 with
a difference of 5 features for each experiment. For example, Table 6 shows the results when
the 10 most important features were selected using the PCA, SVD, and Chi2 techniques.
Results showed that the accuracy of the RF using 10 features from an SVD was the same as
that when using 30 features. The SVD considered less important features for calculating
the accuracy while the PCA and Chi2 techniques skipped the less important features. The
accuracy of the MLP and KNN classifiers improved with a PCA from 0.93 and 0.94 to 0.95
and 0.95, respectively.

Table 6. Performance of classifiers with 10 most important features.

Model Chi2 SVD PCA

RF 0.90 0.93 0.91

SVM 0.92 0.93 0.93

GBM 0.88 0.90 0.90

LR 0.92 0.92 0.90

MLP 0.94 0.94 0.95

KNN 0.95 0.95 0.95

Table 7 shows the results of the machine learning classifiers when the top 15 features
were selected. The RF, GBM, LR, and KNN classifiers gave the best results with Chi2
features in comparison to SVD- and PCA-derived features. In the Chi2 technique, due to the
absence of association between two cross-tabulated variables, the percentage distributions
of the dependent variable within each category of the independent variable are identical,
which affects the accuracy of results. The performance of the SVM was the same with 10
and 15 features while the performance of the GBM improved with 15 features. The highest
classification accuracy using 15 features was when a KNN classifier was used with Chi2
features and an MLP with either SVD or PCA features.

Table 7. Classification accuracy of machine learning classifiers using 15 most important features.

Model Chi2 SVD PCA

RF 0.94 0.92 0.92

SVM 0.92 0.93 0.93

GBM 0.91 0.90 0.90

LR 0.92 0.91 0.92

MLP 0.95 0.96 0.96

KNN 0.96 0.93 0.95

Further experiments using 20 and 25 features for each feature selection approach
indicated that there was no improvement in the classification accuracy with 25 features,
so only the results with 20 features are presented in Table 8. The results suggested that
the accuracy of the RF and SVM improved with 20 features with Chi2-selected features
while the performance of the GBM tended to go down. The LR and MLP performed almost
similarly with 15 and 20 features while the performance of the KNN model was enhanced
with an SVD but degraded with the Chi2 and PCA feature selection techniques. The highest
accuracy of 0.96 using 20 features was obtained from the MLP when used with either of the
three feature selection approaches.
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Table 8. Accuracy of classifiers using 20 most important features.

Model Chi2 SVD PCA

RF 0.95 0.93 0.92

SVM 0.93 0.92 0.93

GBM 0.90 0.90 0.88

LR 0.92 0.91 0.92

MLP 0.96 0.96 0.96

KNN 0.95 0.94 0.95

A comparison of the classifiers’ accuracy with each feature selection approach is shown
in Figure 4 where the x-axis indicates the number of selected features while the y-axis
represents the highest achieved accuracy. Figure 4 shows that the MLP and KNN classifiers
consistently showed better performance on all feature selection approaches that other
machine learning classifiers. The highest achieved accuracy on the unbalanced dataset was
with the MLP and KNN classifiers with different feature sets selected from different feature
selection approaches. The highest accuracy of 0.96 for the MLP was using 15, 20, and 25
features from the SVD and 15 and 20 features from the PCA. On the other hand, the KNN
classifier achieved the same using 10, 15, and 25 Chi2 features and 10 PCA features.

(a) (b)

(c)

Figure 4. Comparison of classification accuracy using various number of features: (a) features using
the Chi2, (b) SVD, and (c) PCA feature selection approaches.
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4.2. Experimental Results with Balanced Data

After upsampling, the distribution of the number of samples in each class is given in
Table 9. The purpose of upsampling the records for the malignant class was to balance the
records so that the classifiers could be properly trained to achieve an increased accuracy.
The number of samples used for training plays a major role in the resulting accuracy.
Imbalanced datasets where the number of samples for the minor class is low cause the
classifier to be insufficiently trained and result in a higher number of inaccurate predictions
[49]. Many classifiers implicitly assume that the data are balanced; consequently, the minor
class is ignored, and classifiers are biased toward the majority.

Table 9. Number of samples for each class after applying SMOTE.

Benign Malignant Total

Training set 271 264 535

Testing set 93 86 179

Total 364 350 714
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4.2.1. Results with All Features

The same procedure was adopted with the balanced dataset as for the imbalanced
dataset where the size of the feature set was changed from 10 to 30 gradually, with each
of the selected feature selection approaches. initially, all 30 features were selected for
the experiments with the machine learning classifiers. Experimental results are given in
Table 10. Results indicated that balancing the dataset led to a better classification accuracy
from all the classifiers. The accuracy was improved substantially for all classifiers and
especially the KNN classifier, which showed an accuracy of 0.99 using all 30 features.

Table 10. Experiment results using all 30 features from the balanced dataset.

Classifier Accuracy

RF 0.98

SVM 0.97

GBM 0.95

LR 0.98

MLP 0.95

KNN 0.99

4.2.2. Experimental Results on Balanced Dataset using Different Feature Sets

In addition to the selection of all 30 features from the balanced dataset, several ex-
periments were performed using 10, 15, 20, and 25 features. These features were selected
using the PCA, Chi2, and SVD feature selection approaches. Tables 11 and 12 show the
classification accuracy using 10 and 15, 20 and 25 features, respectively, with the PCA, Chi2,
and SVD approaches.

Table 11. Performance of classifiers with 10 and 15 most important features from a balanced dataset.

Model
10 Features 15 Features

Chi2 SVD PCA Chi2 SVD PCA

RF 0.96 0.97 0.98 0.97 0.97 0.98

SVM 0.95 0.98 0.97 0.96 0.97 0.98

GBM 0.95 0.98 0.97 0.95 0.94 0.96

LR 0.96 0.98 0.97 0.95 0.99 0.97

MLP 0.98 0.97 0.98 0.97 0.98 0.98

KNN 0.98 0.98 0.99 0.97 0.99 1.00

Table 12. Performance of classifiers with 20 and 25 most important features from a balanced dataset.

Model
20 Features 25 Features

Chi2 SVD PCA Chi2 SVD PCA

RF 0.98 0.99 0.98 0.98 0.98 0.99

SVM 0.97 0.97 0.96 0.98 0.96 0.96

GBM 0.95 0.97 0.96 0.97 0.98 0.96

LR 0.98 0.97 0.97 0.96 0.96 0.96

MLP 0.98 0.98 0.97 0.97 0.97 0.97

KNN 0.99 1.00 0.99 0.99 0.99 0.99
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The results indicated that balancing the dataset lead to an increased performance
where the breast cancer detection accuracy from all the classifiers was increased significantly.
Balancing the dataset mad the number of training samples almost equal for both classes,
which increased the learning capability of the classifiers. Hence, the prediction accuracy
was improved.

Furthermore, the results suggested that the performance of the models increased when
the number of features was reduced. Originally, the dataset contained 10 features while the
additional 20 features were derived features. However, all the derived features were not
necessarily appropriate to contribute to a better prediction accuracy. The same could be
said for the original 10 features; thus, feature selection was an important process whereby a
higher accuracy could be achieved using less features. For this purpose, this study utilized
the PCA, Chi2, and SVD approaches. The results given in Tables 11 and 12 indicate that
the KNN method outperformed all other classifiers by achieving an accuracy of 100% for
two feature set sizes, 15 features and 20 features. It achieved an accuracy of 100% when
trained on the most important 15 features selected using the PCA algorithm. However, its
performance was superior when trained on the most important 20 features as it achieved
an accuracy of 99.0% with PCA and Chi2 features each and 100% with SVD features.

For better understanding the results, the classification accuracy of all the classifiers
using the most important 15 and 20 features from the PCA, Chi2, and SVD techniques is
shown in Figure 5 and Figure 6, respectively.

Figure 5. Comparison of different machine learning models with 15 selected features from Chi2, SVD,
and PCA approaches.
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Figure 6. Comparison of different machine learning models with 20 selected features from Chi2, SVD,
and PCA approaches.

4.3. Results Using K-fold Cross-Validation

In this section, we present the results of a k-fold cross-validation using all feature
engineering techniques. We selected the best 15 results and deployed the machine learning
models. We used 10 folds to perform the experiments. The results of the models are
presented in Table 13. The experimental results revealed that the models also performed
better using the k-fold validation approach, similar to the train–test–split approach. The
SVM and LR showed significant results using PCA features as the SVM and LR both
achieved a mean accuracy of 0.98 with a ±0.02 standard deviation. Similarly, with Chi2
features, the RF, SVM, and LR achieved a 0.97 mean accuracy score. These results showed
that the proposed approach was not overfitting because the 10-fold accuracy was still high
at 0.98 with a low standard deviation of ±0.02.

Table 13. k-Fold cross-validation by all feature selection techniques

Models Actual Features PCA Features SVD Features Chi2 Features

RF 0.94 (±0.04) 0.97 (±0.03) 0.96 (±0.03) 0.97 (±0.04)
SVM 0.94 (±0.03) 0.98 (±0.02) 0.97 (±0.04) 0.97 (±0.03)
GBM 0.93 (±0.04) 0.93 (±0.03) 0.94 (±0.03) 0.94 (±0.03)

LR 0.94 (±0.03) 0.98 (±0.02) 0.96 (±0.02) 0.97 (±0.02)
KNN 0.94 (±0.03) 0.97 (±0.03) 0.96 (±0.02) 0.96 (±0.02)

4.4. Discussion

Our results showed that the models’ performance varied with the change in feature
selection techniques and the number of features used for the experiments. The underlying
reason was the impact of the feature space on the models’ learning process. When we
selected the best features, the feature space became more linearly separable which helped
to improve the performance of the machine learning models. For clarification, the feature
space of the used dataset is shown in Figure 7. For this purpose, a scatter plot was used
to show the feature space. We reduced the dataset dimension with the PCA, Chi2, and
SVD techniques into three dimensions and then illustrated it on a scatter plot while in
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the original dataset case, we used three random features and visualized the feature space.
We can see that in the case of the used feature selection techniques, there were only a few
samples that were overlapping but in the original dataset case, the overlapped sample
count was higher which led to poor learning and low accuracy.

For analyzing the efficacy of the proposed pipeline and adopted strategy for breast
cancer detection using FNA features, its performance was compared with several state-of-
the-art approaches. Table 14 shows the comparison between the proposed strategy and
previous works on breast cancer detection. Comparison results indicate that the proposed
methodology outperformed state-of-the-art approaches and achieved an accuracy of 100%.
This accuracy was achieved using the KNN approach with the 15 most important FNA
features which were selected using the PCA algorithm. It proved that selective features
played a more important role to enhance the prediction performance than using a large set
of features that were not prioritized with a feature selection approach. Similarly, all derived
features do not contribute to elevating the performance of a classifier, and the selection of
important features that carry a higher importance can play an important part to increase
the accuracy of machine learning classifiers. Most of the studies used the WBCD dataset,
which is an imbalanced dataset; we applied SMOTE for data balancing. We also applied
feature selection techniques that selected the best features for model training; the number
of features could be 30, 20 or 15 features. Despite obtaining better results from the models,
several limitations still exist in this study. The size of the dataset was small and the dataset
was imbalanced as well. By improving these limitations in the future, more accurate results
can be obtained.
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Figure 7. Feature space visualization using feature selection techniques: (a) Chi2, (b) PCA, (c) SVD,
and (d) original.
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Table 14. Comparison of classification accuracy with state-of-the-art approaches for breast cancer
detection.

Ref. Models Features Cross-Validation Dataset Accuracy

[18] GONN 9 10 folds WBCD 98.24%, 99.63% and 100% for 50–50,
60–40, 70–30 train–test split, respectively

[13] SMO 10 No WBCD 96.2%

[10] SVM, MLP N/M No WBCD 99%, 99.28%

[19] AR, NN 9 3 folds WBCD 95.6%

[16] SVM 30 No WDBC + WPBC 97.0%

[17] K-NN 9 10 folds WBCD 99.14%

Proposed KNN 15 Yes WBCD 100%

5. Conclusions

This study proposed a methodology for breast cancer detection using fine-needle
aspiration features. Experiments were conducted with a threefold purpose. First, the
impact of the imbalanced data size was analyzed on the classification accuracy of six
classifiers including RF, SVM, GBM, LR, MLP, and KNN. For this purpose, the dataset was
upsampled for the minor class using the SMOTE approach. Secondly, the influence of the
feature set size was analyzed using various feature sets with selected machine learning
classifiers with all and selected features, respectively. Important features were selected
using three feature selection approaches: PCA, Chi2, and SVD. Thirdly, analyses were
performed to validate the effect of the primary and derived features on the classification
accuracy. The results indicated that an imbalanced dataset led the classifiers to a biased
attitude toward the minor class and produced incorrect predictions, which reduced the
classification performance. Balancing the dataset with SMOTE increased the performance
of all the classifiers and KNN especially. Changing the feature set size was also important
and an increase in the feature set size tended to degrade the performance of the classifier.
It showed that increasing the feature set did not necessarily improve the performance,
especially when the feature vector contained derived features. The results suggested that
the derived features did not guarantee enhanced performance unless they were prioritized
concerning their importance using a feature selection approach. The proposed methodology
provided a 100% breast cancer prediction accuracy with the KNN approach using the 15
most important features selected from the PCA algorithm and outperformed state-of-the-
art approaches. The performance of the KNN was superior when used with the 20 most
important features as it reached 99.0% with the PCA and Chi2 techniques each and 100%
when an SVD was used. The proposed approach was limited by the fact that experiments
were performed on the WBCD, one of the most widely used datasets for breast cancer
detection and did not guarantee the same results on other datasets. We intend to use more
datasets to generalize the results.
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