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Abstract 
Efficient image retrieval from a variety of datasets is crucial in today's digital world. 

Visual properties are represented using primitive image signatures in Content Based 

Image Retrieval (CBIR). Feature vectors are employed to classify images into predefined 

categories. This research presents a unique feature identification technique based on 

suppression to locate interest points by computing productive sum of pixel derivatives 

by computing the differentials for corner scores. Scale space interpolation is applied to 

define interest points by combining color features from spatially ordered L2 normalized 

coefficients with shape and object information. Object based feature vectors are formed 

using high variance coefficients to reduce the complexity and are converted into bag-of-

visual-words (BoVW) for effective retrieval and ranking. The presented method encompass 

feature vectors for information synthesis and improves the discriminating strength of the 

retrieval system by extracting deep image features including primitive, spatial, and over-

layed using multilayer fusion of Convolutional Neural Networks(CNNs). Extensive experi-

mentation is performed on standard image datasets benchmarks, including ALOT,  

Cifar-10, Corel-10k, Tropical Fruits, and Zubud. These datasets cover wide range of 

categories including shape, color, texture, spatial, and complicated objects. Experimental 

results demonstrate considerable improvements in precision and recall rates, average 

retrieval precision and recall, and mean average precision and recall rates across various 

image semantic groups within versatile datasets. The integration of traditional feature 

extraction methods fusion with multilevel CNN advances image sensing and retrieval sys-

tems, promising more accurate and efficient image retrieval solutions.
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1.  Introduction
Digital media has become an essential part in modern life with advances in user-friendly 
applications, online data search, and document retrieval. Images are one of the most vital 
forms of digital media. Digital image has discrete or limited values for intensity. Digital 
image processing has made great advancements in the field of computer vision. Useful 
information is extracted and analyzed from both the query and retrieved set of images. 
A massive number of images are searched from a huge repository of databases over the 
Internet [1].

Image retrieval [2] is the process of searching images from different sources. Modern 
research trends lead towards exploration of efficient image indexing and searching techniques. 
Image retrieval can be text-based, semantic-based, and content-based [3]. Most of the pro-
posed methods employ the content-based image retrieval [4].

Visual properties of primitive image features are employed in Content-Based Image 
retrieval (CBIR) [5]. Preprocessing extracts images from databases using these primitive 
features. Local features contain interest spots, spatial coordinates, and regions within 
images, while global features cover generic image qualities including shape, color, edges, 
and textures. A prevalent problem is the similarity in color histograms that makes  
color-oriented search difficult [6]. Shape-based image retrieval recognizes different shapes 
by highlighting areas and contours. Contour identification and subsequent boundary 
image information extraction is aided by methods like auto-regression, shape signatures, 
and polygon approximation [7].

Object recognition relies on describing shape geometry. Color features similarity makes it 
difficult to identify object exclusively. Color and form characteristics are combined to boost 
object detection and image retrieval. Object representation is enhanced by adding spatial 
information to colors. Corners and edges identification and computing pixel intensities are 
useful descriptors. Histograms show various color image rotations and scale invariants. Global 
features inadequately represent an image's geographical distribution and qualities. Their 
restricted application makes them vulnerable to image matching. Contrarily, local features 
based semantic gap reduction using interest point detection is favorable.

Enormous algorithms contributions including Harris [8], Hessian [9], affine invariant 
[10], and scale invariant [11] locate interest points. Local and global features are merged to 
identify objects and image contents. CBIR based systems exploit visual models like Bag-
of-Words (BoW) [12] paradigm for data representation. CBIR based methods using BoW 
produce compact image features and achieve variance to image alterations [13].

Effective image retrieval and classification algorithms are being proposed by merging 
CBIR models to deep learning techniques [14]. Research trends focus on exploration of 
deep learning based effective techniques for effective images retrieval. Deep learning is 
the solution for asymmetry problem in feature extraction and representation. Modern 
deep learning based techniques use Convolutional Neural Networks (CNNs) for their 
adaptability to large scale datasets [15]. The CNNs based proposed methods [16] have 
shown improved performance results for image descriptions and retrieval. Image seman-
tics are properly defined using CBIR in combination with deep learning. Conventional 
image representations rely on attributes and perceptions imposed by humans. Seman-
tic gaps must be filled up properly. Deep features extracted thorough CNNs reduce 
the semantic gap between low-level information and human perceptions. CNN models 
created visual features efficiently exploit high-level information for translation. Several 
feature descriptors [17] are also applied in an analogous manner at various phases. Deep 
feature based image classification using CNNs provide effective learning with less data 
and improves performance for tiny image datasets.
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Deep Convolutional Neural Networks (CNNs) also applied to transfer learning improve 
performance across several datasets by pre-training on one dataset [18]. They have outper-
formed other machine learning techniques for numerous applications. Deep learning-based 
CNNs paired with other image retrieval algorithms perform optimally for multiple tasks. Dif-
ferent structurally robust deep learning-based models yield competitive outcomes for a variety 
of image retrieval applications. AlexNet [19], VGG [20], ResNet [21], DenseNet [22], and 
GoogLeNet [23] are some trendy CNN models. Their creative methods and excellent results 
make them pertinent across a range of image retrieval applications.

Due to these recent developments in image processing and analysis, there have been a lot 
of developments in many different areas such as medical diagnosis and automatic security. 
Despite this, a major factor which is currently unresolved is the ability to create systems that 
could unify the operation of deep image sensing analysis and retrieval under single archi-
tecture. This integration plays a very vital role because it makes the different operations 
systems to be in harmony in processing and delivery of information. Moreover, due to the 
increasing numbers and variation of the size of the datasets, creating efficient image search 
scripts to cater for both, the large datasets as well as the small ones are proving to be central 
to the success of any application. Another important criterion is the availability of symmetric 
algorithms that could provide a high level of performance when working with versatile image 
benchmarks and that would be resistant to different datasets. Similarly, it is crucial to pay 
attention to colored and grayscale images with the same level of analysis stability at higher 
resolution as scans accumulate information for more accurate image interpretation. These 
issues are solved in this research by considering sophisticated strategies for the sensing and 
retrieval, stable algorithm development and image generalization for different scales. Major 
objective is to propose a more flexible and effective technique for modern image analysis and 
retrieval goals.

An enhanced algorithm based feature extraction technique intends to bring innovation to 
research. Local features are collected and analyzed using CNN architectures such as AlexNet, 
GoogLeNet, DenseNet, ResNet-101 [24], and Inception Net v2 [25]. These extracted features 
are improved using shapes, colors, background and foreground objects, and other spatial 
coordinate properties. The deep image contents acquired by factorizing, thresholding, and 
corner responses are revealed simultaneously based on straddling and autocorrelation. Image 
analysis involves signature altering and datasets harmonization. Image content analysis is 
enhanced by combining image indexing and categorization. Characteristics with signatures 
are extracted through deep learning-based analysis. Extracted features are then integrated 
to architectural algorithm's elaborations, suitable coefficients, and parallel joints of color 
displacements. Deep learned features for both colored and gray scale images are integrated to 
generate efficient and compact image feature vectors. CNNs and algorithmic channelizing is 
employed to generate CNN based signatures. Feature vectors are merged with CNN signatures 
to achieve consistent variety of categories for datasets and semantic groups. Experimentation 
is performed by integrating the presented approach with various CNN designs as DenseNet, 
AlexNet, InceptionNet v2, ResNet-101 and GoogLeNet. Spatial head integration produced 
from color channels enables architectural bonding. Color coefficients are integrated with L1 
and L2 normalization [26] at RGB color channels. Deep learned features [27] and compact 
feature vectors are created by fusing signatures with coefficients. The presented approach is 
further evaluated on a number of datasets including ALOT [28], Cifar-10 [29], Corel-10K 
[30], Tropical Fruits [31], and Zubud [32].Image searching for database tiny, large, complex, 
or mimicked images is performed. The inclusion of BoW architecture increases the usabil-
ity and effectiveness of the presented technique and provides proficient classification and 
retrieval of images.
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Contributions of the presented approach are following:

•	 Provides fusion based image retrieval method using CNN signatures for gray scale and 
colored images feature extraction with shape, color and texture features.

•	 An efficient feature detection method is provided using sampling, smoothing, filtering, sup-
pression, scaling and placement techniques that results information related to image local 
features.

•	 Dense deep learned patterns compatibility is achieved with global signatures, and Cross 
domain mapping is offered for state of the art benchmarks datasets.

•	 Heterogeneous structure CNN fusion is provided with primitive features and color channels 
that work on both 255 levels of gray scale images and for RGB channels.

•	 Multi structural formation for complex datasets is provided with enhanced accuracy in 
results, enhanced CNN proficiency achieved and images salient features are coupled with 
CNN architecture.

•	 Creates a fusion for basic features vectors and CNN to the bag of visual words framework 
for image indexing and ranking and retrieval.

2.  Literature review
Modern research trends mainly focus on finding better pattern recognition and features 
extraction techniques to improve CBIR performance. Effective Methods using machine 
learning and deep learning based methods are being proposed to provide efficient image 
retrieval. A method for image description using deep learning is presented [33]. AlexNet CNN 
is applied for image retrieval and classification using Local Binary Pattern (LBP) descriptors 
and combines it to Histogram of Oriented Gradients (HOG). Image dimensions reduction is 
achieved through Principal Component Analysis (PCA) method. Datasets Corel-1000, OT, 
and FP are employed in experimentation to provide performance comparison with existing 
methods. Results showed improved accuracy rates and better mean of Average Precision 
(mAP) and also reduced the computational overhead.

A detection method for Alzheimer's disease using CNN is presented [34].Early stage 
detection is achieved using 3D auto encoder techniques, 3D CNN and 3D Capsule Net-
works (CapsNets).CapsNets enables efficient learning to methods and works well on small 
datasets. Combining these techniques provides better performance than a standalone deep 
learning-based CNN. The presented method yields superior image classification results. A 
novel approach [35] for feature extraction at different layers is presented. Feature extraction 
is performed by introducing a mapping function that highlights the effectiveness of similarity 
at a lower layer. A similarity check is conducted for the query image to its nearest neighbors 
with similar semantics. Experimentation results demonstrate the effectiveness of the presented 
method across different retrieval benchmarks. A bi linear architecture for feature extraction is 
presented using CNN [36]. Feature extraction is performed through two CNN architectures 
working in parallel. Features are directly extracted at various scales and locations of images 
on different convolution layers. The deep learning-based CNN architecture is pre-trained 
on a generic image datasets, and bi linear pooling is utilized to reduce image feature dimen-
sions. Back propagation is employed for final training, enabling the architecture to learn 
various important parameters for image retrieval. Experimentation on three standard data-
sets benchmarks shows that the presented method outperforms other approaches in terms 
of performance, time efficiency, and storage memory requirements. Another method [37] 
introduced a new model for CNN that can be employed in indexing, extraction, and retrieval 
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of images. Low-level descriptors are generated through Random Maclaurin projection, and 
standard image datasets are employed to evaluate the image descriptor efficiency. The pre-
sented architecture's scalability is evaluated on a dataset containing one million images, with 
performance assessed based on accuracy, speed, and storage requirements. GPU kernels are 
also evaluated for their retrieval and processing performance.

A simple framework proposes a CNN using deep learning and Support Vector Machine 
(SVM) for CBIR [38]. Empirical studies show that the presented method can improve CBIR 
performance. An architecture network is presented [39], which is end-to-end trained and 
uses CNN to solve image related problems. It addresses image retrieval by employing learn-
ing based on the representation of images. A new method using the triplet mining method 
is presented, providing local pooling on multiple scales. Experimentation on three standard 
datasets demonstrates better performance. An approach [40] is presented for the representa-
tion of features based on various approaches to deep learning. The presented approach works 
on hand-crafted feature representations and categorizes editorial-based images into six sets 
of classes. Experimental results show better performance for these combined sets of features 
across various classes.

Mostly CBIR techniques are based on image features at a lower level. A novel algorithm is 
presented [41] that work in two stages. At the first stage, feature extraction is performed using 
CNN, and an Ensemble Learning (EL) model is employed to add novelty to the CNN-based 
approach. Comparison results show better performance for the presented algorithm in terms 
of image retrieval. A technique for the quality assessment of retrieved images is presented 
[42]. A technique called CNN-DBN uses CNN models for feature extraction and builds a 
model based on Deep Belief Network (DBN) to assess quality. Experimental evaluation is 
designed to assess the method’s ability and performance. An image retrieval model [43] is 
presented that uses triplet CNN for feature learning using certain criteria for similarity met-
rics. It also proposes methods to improve CBIR task performance. The model works without 
using any activation function to preserve feature information and combines features received 
from multiple layers for the image retrieval task. Experimentation results show the effec-
tiveness of the presented model for CBIR. The CNN-based feature extraction technique [44] 
combines computer vision approaches with CNN. Lower-level features are extracted using 
computer vision approaches, while high-level features from images are extracted using CNN. 
Increasing the number of layers increases the training time, and comparison is made between 
results obtained from different layers of CBIR and other computer vision-based techniques. A 
CNN-based method [45] for image feature extraction using Euclidean distance is presented. 
Image features are extracted for both the query image and the stored images, and performance 
evaluation is done through precision rates. Image classification results are improved through 
another presented technique [46]. New layers are added to the network, and an algorithm for 
feature extraction is presented. Image retrieval is performed using CNN-based representa-
tions. A Principal Component Analysis-based method is presented [47], utilizing deep neural 
networks for the classification of images. A method based on symmetry findings using scoring 
with neighboring points is presented [48] for deeply learned features through smoothing and 
standard deviation methods.

A fusion-based new method using the ResNet, VGG, and GoogLeNet architectures is 
presented [49]. Image classification is achieved through Random Forest and SVM methods, 
with experimentation conducted using the Stanford 40 actions dateset to obtain accurate 
results. The deep learning-based method presented [50] is based on five stages of image 
pre-processing, pre-trained CNN, semantic segmentation, query analysis, and image retrieval, 
utilizing the NTCIR13 Lifelog-2 dateset for testing the methodology. Deep neural networks 
(DNN) are employed for image stemming, recognizing objects using AlexNet and GoogLeNet 
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architectures, and scene classification through Places 365 using AlexNet, ResNet, GoogLeNet, 
and VGG architectures. The CRIB-based method presented [51] uses visual features such as 
edges, shapes, color, and texture for processing. Image classification is performed using CNN, 
which uses cosine for image retrieval. An efficient CNN-based method [52] is presented for 
sparse representation, including a new method for detailed feature extraction, providing accu-
rate results for image retrieval. These methods are also efficient and time-saving for sparse 
representations. A framework proposed [53] for noise reduction that uses histogram equaliza-
tion. Feature extraction is performed by Gray Level Co-occurrence Matrix (GLCM), Hier-
archal and Fuzzy c- Means (HFCM) algorithm is applied to match similarity computations 
and Deep Learning based Enhanced Convolution Neural Network (DLECNN) algorithm is 
employed for image retrieval. The proposed method shown improved results related to accu-
racy, precision, f-measure, recall and reduced complexity. It also provided better retrieval for 
the query images.

In current research trends, more emphasis has been placed on optimizing synchronization 
techniques for complicated neural networks employing a variety of mathematical models. In 
[54] focus is on the event-triggered synchronization of coupled neural networks with reac-
tion–diffusion terms where an event-triggered controller is employed to update the weights 
at event instants in accordance to certain trigger criteria. This strategy has the advantage of 
lowering the communication burden in control systems more than the continuous control 
approach. By means of inequality techniques and the new designed controller, the study 
offer the criteria for the event-triggered synchronization and the numerical examples ver-
ify the theoretical finding. Likewise, in [55] an adaptive synchronization has been studied 
in FOUCVCNNs using non-decomposition method for fractional order systems. Here, the 
FOUCVCNNs model is derived to preserve its complex-valued structure and has not been 
further divided into real entities. The paper presents an adaptive controller to minimize the 
control costs, referencing to fractional Lyapunov theory, 1-norm analysis, and inequalities 
and providing synchronization criteria using the Lyapunov equation. Computational simu-
lations support these results. Further, in [56] there are new developments that go beyond the 
integer-order kinetics to describe tumor growth and incorporate fractional-order phenomena 
in cellular response. This model describes the interaction of cancer stem cells and non-stem 
cancer cells using a system of coupled nonlinear integrodifferential equations. Using the prop-
erties of Mittag-Leffler functions and fixed-point theory, the authors prove the existence and 
boundedness of the solutions. The finite difference scheme is used to explain the efficiency 
of the model through the consideration of several numerical examples Simulations provide 
information on cancer development, and the tumor growth paradox linked with cancer stem 
cells.

3.  Proposed methodology
The presented method comprises different stages for deep image retrieval. The first phase 
is to describe and explore image key points for feature detection. Descriptor formation and 
matching is performed to find next-level details for the explored features. Color Channelizing 
is applied to find the color coefficients for the colored images. Color components denote the 
color features of the images. Fusion of CNN-based networks is applied to extract the deep-
learned features. Finally, the features collated from the stages are collected through BOVW. 
Image indexing and ranking is applied for relevant and efficient image retrieval. Modularity 
is the key feature of this presented method. It combines various image detectors with the key 
point descriptors. The following section provides an overview of the main components of the 
presented method:
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3.1.  Detection and depiction of keypoints
The first step is to convert the colored images to gray scale levels between 0 and 255. Major 
benefit of gray scale image conversion is the image noise reduction. Noise reduction in gray 
scale images is achieved through varying intensity levels for black and white. High and low 
level intensity creates a color combination for black and white. Key points [57] are the main 
points of interest in any image that provide valuable information for image retrieval. Effi-
cient feature detection is the key to efficient image retrieval systems. The presented method 
provides a combination of effective approaches for detecting salient regions of interest from a 
huge repository of images.

3.2.  Scale axis discretization
Scale invariance is crucial for high-quality key points detection. Scale invariance provides 
detection and exploration of local features. Scale space defines the areas of interest for image 
saliency. Local maxima is searched on this scale axis as well as in the local image plane using 
the FAST [58] scores. The presented method estimates these key points using the continuous 
space for scales. Scales axis is discretized at the coarse level of intervals as described in Fig 1.

3.3.  Objects recognition and description using BRISK
The sampling frequency is selected on the basis of the right sampling criteria. Instantaneous 
values from the continuous signals are received from Analog to Digital convertor. These 
sample values are based on instant sampling of the signals. High-frequency samples are 
considered for comparison with the last seen changes in the signals. Sampled signals are the 
samples taken from the low frequency and compared with the signals of high frequency. 
The BRISK framework [59] works on the formulation of a pyramid for the scale-spaces. 
This pyramid is based on octaves and intra-octaves that help to achieve half sampling for the 
basic image. Fig 2 shows the pyramid layering and image sampling features. Intra octaves are 
located in between the other octave layers. The original image is down-sampled by a factor of 
1.5 to obtain the first intra-octave. Other remaining intra-octave layers are simply achieved 
through half sampling.

Fig 1.  Scale space key point’s detection [ 55].

https://doi.org/10.1371/journal.pone.0317863.g001

https://doi.org/10.1371/journal.pone.0317863.g001
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The image down sampling is performed for resolution reduction in the spatial domain 
within 2D representation. Down sampling reduces image storing and transmission require-
ments. While up sampling is the increase in spatial resolution for an image 2D representation.

Algorithm 1: Detection of key points
1: Image=IMG
2: P=Pyramid
3: Key points=KP, FAST key points=KP_F, Harris key points=KP_H, Refined key points=KP_R, Final points =KP_F
4: Gaussian blur based Pyramid generation on various σ values P = {IMG1, IMG2, IMG3,…., IMGn}
5: For each level scale in P i=1 to n
6: KP_F= FAST_D (IMGi)
7: Response Score= KP_H (KP_F)
8: Refined points= KP_R (KP_H, IMGi)
9: KP_Fi= Suppression (KP_R)
10: Merge all scale level key points: KP_F= ⋃KP_Fi
11: End for

3.4.  Image shape formation and suppression
Masking is applied to explore important points in any shape of the image. 9-16 masking is 
applied in the method that requires a minimum of 9 pixels at consecutive levels and 16 pixels 
in a circle position that forms a bright or dark side for the points in comparison to the center 
pixel point. A FAST detector initially with 9 to 16 separate masking with each octave applied, 
then to the intra octaves. Lastly, the same threshold value T is applied to detect the important 
regions in the images. Thresholding is the last operator point in the area of interest. This value 
is specified pixel location within the specified range that provides image object identification 
with their known brightness range. Object brightness is also an important factor in the object 
identification.

Uniform Thresholding and adaptive thresholding are two major types of thresholding. 
Uniform thresholding separates and identifies pixel levels between black and white. Brightness 
is set to white for an original eye image pixels above 160 levels, and pixels below 160 levels are 
black. Facial skin pertained to parts separated from the image background and other bright 

Fig 2.  Pyramid layering and image sampling.

https://doi.org/10.1371/journal.pone.0317863.g002

https://doi.org/10.1371/journal.pone.0317863.g002
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areas of the face are also separated from hair and eyes. Thresholding provides an efficient 
isolation and separation of areas of interest in the images.

3.5.  Edges and corner responses
Edges are considered another important factor for exploring image features. Suppression is 
the technique for finding the edges from the query image. This method focuses on the relative 
points that lie at the ridge top of data edges and the remaining points are suppressed. It gives 
the output in the form of thin lines from edge points. Edges are also formed by finding the 
location of each single edge point. Gaussian smoothing is combined with first-order differen-
tiation to form the Gaussian template. It provides a smoothed image with the edges formed 
through the ridge of the image data. Image can be convolved with the operator to find edges at 
the exact and correct points. Fig 3 shows the methods used to find edges and corner responses 
in images. This convolution results in the first derivative to the edges in their normal direc-
tion. The maximum function results in edge location that is the peak value of the edge data 
with the sharp image gradient.

Operator Gx is formed through the Gaussian function G derivative of in the normal direc-
tion denoted by x [60].

	 G g
xx =
∂
∂ ⊥

	 (1)

Where x is the estimation from Gaussian function g first order derivative that is convolved 
with the image I and represented as:

	 x
I g

I g
⊥=

∇ ∗( )

∫ ∇ ∗( )

¤

¤

	 (2)

The maximum point for the Gaussian function Gx formed through convolution with the 
image is the true edge point location. This is formed when the value for differential is zero:

	
∂ ∗( )
∂

=
⊥

G I
x
x 0 	 (3)

Substitution of Eqn. (1) in Eqn. 3 [60]:

	
∂ ∗( )
∂

=
⊥

2

2

0
G I
x

	 (4)

This suppression is equivalent to the peak values that are perpendicular to the edge. It thins 
the operator for edge detection to find the right place without having multi-point edges. It also 
contains minimal noise in the responses.

Points of interest that make the regions applied to suppress the non-maxima in the scale 
space. These key points need to fulfill the 8 neighbors FAST scores maximum condition in the 
relative layer. The maximum value of the threshold considered as a corner point is defined by 
these scores. The second condition for suppression is that the scores for the upper and lower lay-
ers need to be lower than these points values. Patches are divided into equal sizes of squares and 
the side size is determined by the 2-pixel values within the layer with the expected maximum.
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Fig 3.  Image region of interest.

https://doi.org/10.1371/journal.pone.0317863.g003

https://doi.org/10.1371/journal.pone.0317863.g003
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3.6.  Applying interpolation for image enhancement
Interpolation is required at the patch boundaries, as these layers at the neighboring side are 
defined by using variant discretization. Maxima are detected at the initial scale axis that is 
the intra-octaves and the below-level scores. After finding maxima, 5-8 masks applied to the 
interest point values. Scores for the above patch for this case may not be lower than the octave 
points of interest. Image saliency is considered as continuous quantity along the scales dimen-
sions across that image. For scale dimension-based image saliency, each maxima value detect 
is refined by the scale continuous values and with the sub-pixels.

Fig 4 shows the methodology for the presented method. Least squares are fitted for 
the function of 2D quadrates to each of obtained patches scores. Three scores for the 
patches are obtained, one from the layer of the key points and the other from the above 
and lower layers. These three scores contribute to the refined valued saliency maxima 
in three sub-pixels. 3x3 patching scores are considered at each layer to avoid the risks of 
resampling. 1D parabola across the axis is defined using these refined valued scores that 
contribute towards the final estimated scores and the estimated scale point to the max-
imum. Finally, the presented method re-interpolates the coordinated image among the 
layer patches along the scale. Fig 5 represents the saliency and masking offered in pre-
sented method.

Algorithm 2: Descriptor formation for Keypoints
1: Key points= KP, Image=IMG, Descriptor=D, Local patch=LP, Intensity Differences=ID, Encoded Descriptor=ED
2: For each k in KP
3: Ø = Orientation Computation (k, IMG)
4: LP= Patch Extraction (k, IMG)
5: ΔIDk= Compute Intensity Differences (LPk)
6: Quantization of Intensity differences ◊ ED= Descriptor Encoding (ΔIDk)
7: D = {D1, D2, D3, …,Dm}

Fig 4.  Presented Methodology.

https://doi.org/10.1371/journal.pone.0317863.g004

https://doi.org/10.1371/journal.pone.0317863.g004
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Key points are formed through a refined set of sub-pixels in the image and the continuous 
values for scales as shown in Fig 6. A binary string is formed through the concatenation of 
comparison test results for brightness. Direction characteristics for key points are identified 
to achieve invariance for rotations and normalized orientations. This invariance for rotations 
is very important to achieve robustness. The main concern in selecting these comparisons for 
brightness is to maximize the descriptiveness.

Fig 5.  Interpolation and image Saliency.

https://doi.org/10.1371/journal.pone.0317863.g005

Fig 6.  Maximum detection.

https://doi.org/10.1371/journal.pone.0317863.g006

https://doi.org/10.1371/journal.pone.0317863.g005
https://doi.org/10.1371/journal.pone.0317863.g006
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3.7.  Pattern sampling and rotations using DAISY
The presented approach uses pattern for sampling the neighboring points to the key 
point. The Pattern shown in Fig 7 is defined through N locations making a circle around 
the central key point. This pattern provides matching of denses and resembles the DAISY 
descriptor [61].

Gaussian smoothing with standard deviation applied to avoid the effects of aliasing. 
Standard deviation is performed, σi with the proportion to the respective circular points dis-
tances. Scale and position pattern according to the specific image key point is considered as S. 
Sampling point for the (S − 1)/2 is denoted by the pair (xi,xp). Intensity values at the sampling 
points are V (xi, σi) and V(xj, σj). These intensities values estimate local gradients that are 
denoted by Gv(xi,xj) [62].Where:

	 Gv x , x = x x
V x , s  V x , s

xj-xii j j i
j j i i

2( ) −( ) ( ) + ( )
	 (5)

Consider a set A for all the sampling key pints pairs:

	 A x ,x R R i S j i i j Si j= ( )∈ × < ∧ < ∧ ∈{ }2 2 | , 	 (6)

Two subsets for distances are formed; one for pairs at shorter distances D and the other is 
the long-distance Z:

Fig 7.  Refinement Process and Orientation.

https://doi.org/10.1371/journal.pone.0317863.g007

https://doi.org/10.1371/journal.pone.0317863.g007
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	 D x , x A  max Ai j= ( )∈ < ⊆{ | }δ 	 (7)

	 Z  x , x A  < min Ai j= ∈ ⊆{( ) | }δ 	 (8)

Algorithm 3: Descriptor Matching
1: Descriptors=D1, D2, Matched points Result= MP, Match Verification=Matchv, Threshold=Tv
2: For each descriptor ds1 in D1
Dsmatch= Match Descriptor (ds1, D2)
3: For each (ds1, dsmatch)
Matchv= Match Verify (ds1, dsmatch, D2)
4: Apply Threshold to matched filters ◊Threshold Application (Matchv,Tv)

Threshold values for δmin and δmax set according to the scales. By using the iteration for 
the pair point values for Z, the overall pattern direction Y is characterized. The long-distance 
pairs for computing the gradient values locally [62]:

	 g
g
g Z

g x xx

y x x Z
i j

i j

=









= ⋅ ∑ ( )

( )∈

1    
,

, 	 (9)

3.8.  Color-head signatures description and formation
Color images also use pixel intensity to store images. Colored images use three intensi-
ties for color representations in images. RGB model is based on three colors red, green, 
and blue [63]. Color segment is represented in two ways. Each color value is linked to an 
integer value associated with each pixel that indexes a table showing intensity values for 
each color component. The index values retrieve exact information about the actual color 
whose value is to be represented in the pixel displayed or being processed. This method 
of using tables is called the image palette. The color display is performed using the color 
mapping from the pixels to the table values. Color mapping reduce the storage require-
ments that save just one single plane for the image representation and the associated pal-
ette. The disadvantage of using this technique is that color collection is reduced. So, the 
alternative approach for color representation is to use multiple color image planes that 
store each pixel's color components separately. Color specification is called a true color 
method. True color representation provides more accurate color specifications and covers 
more colors as well.

The presented method deals with both gray scale and colored images as shown in Fig 
8. Gray scale images in the presented method efficiently extract the features from the query 
image and perform analysis. RGB components represented as channels are also features. 
These channels hold basic color information. The presented method uses color mapping to 
explore deep features. The coupling of color-based information with grey values is very useful 
in finding image features. The color feature provides object information. Spatial coordinates 
in collaboration with color features resolve similarities among objects in any image. Color 
channeling can help attain better results in precision and recall.

Image is segmented based on information obtained from various scenes and objects of an 
image. Segmentation process applied using labels and scenes require processing on specific 
pixel related to these objects in the colored images. Processing the segmentation on the 
colored image is a complex task to accomplish. To solve this problem L2 normalization is 
applied to the colored components of the image. L2 normalization is applied to blur the cross 
across-pointing in the color coefficients of the objects.
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3.9.  CNN based Signatures Formation
The presented method provides compact and efficient image feature vectors represented in 
Fig 9. These deeply learned features provide integration for colored and grey-level images. 
That is combined with CNN signatures formed through Convolutional Neural Network 
models. Algorithmic channelizing is integrated to achieve uniform diversity for datasets and 

Fig 8.  RGB Channeling.

https://doi.org/10.1371/journal.pone.0317863.g008

Fig 9.  Deep learned features.

https://doi.org/10.1371/journal.pone.0317863.g009

https://doi.org/10.1371/journal.pone.0317863.g008
https://doi.org/10.1371/journal.pone.0317863.g009
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semantic groups [64]. Experimentation is performed to get a parallel response for merging 
the presented method with other CNN architectures like DenseNet, AlexNet, GoogLeNet, 
ResNet-101, and InceptionNet v2. Architectural bonding achieved through spatial heads inte-
gration that is generated from color channels. Compact feature vectors are formed by incor-
porating coefficients with signatures. Deeply learned features search all types of images form 
databases including tiny or large or even complex or mimicked images.

DenseNet is a CNN-based model that uses dense blocks and dense connection layers. Each 
dense block is considered as a separate layer in the network. The bottleneck layer in each 
dense block contains 11 convolution layers for input features reduction and 33 more convolu-
tion layers. All layers are interconnected and each layer gets input from the upper layers and 
passes this information through maps of features to all other subsequent layers presented in 
the network. Hence each layer in the network is connected and receives relative features infor-
mation from the former layers. It makes DenseNet Architecture thinner and complex network 
model. Batch Normalization (BN) and ReLU layers with 3x3 convolutions depict the output 
features from multiple channels.

Applying AlexNet, InceptionNet v2, GoogleNET, ResNet-101and DenseNet CNN-based 
network architectures with the presented method enhanced the quality and accuracy of 
objects detection and recognition. Feature vectors [65] induced to these CNN models generate 
the deep learned signatures that are more powerful and signified features for images.

3.10.  Applying BoVW for Image Indexing and Ranking
Bag-of-Visual-Words (BoVW) architecture provides image indexing and retrieval. Each image 
is represented as a linear vector in this Visual BoW architecture. Ianthe first stage, this model 
defines the controls as Scale Invariant Features Transform (SIFT) [66] for the descriptor of 
image local features. Then the comparison is performed at each of the single vector for the 
image using scores for the dissimilarity check that gives more distinct features. Local features 
descriptor based on SIFT represents the patches in the form of vectors having numeric values.

SIFT descriptor collects 128 bits vectors having equal size of dimensions and rep-
resents them in linear form that makes an effective and compact image representation 
[67]. Visual words are created and represented in the form of histograms. These histo-
grams create inverted image indexes that provide an efficient retrieval of the images. Each 
index generated by the histograms represents a single visual word. Each part of the object 
information contains details related to various aspects of features like texture, shape, 
and color. These visual words contain information based on changes in signal intensities 
caused by filters and other low-level features and also creates the list of image identity 
map terms [68].

The last step shown in Fig 10 is to count the total number of visual words obtained through 
the BoVW model to perform ranking for the query and indexed images. Top-level rank is 
assigned to the shared words of the image having highest frequency in numbers. This model 
does not capture the co-occurrence between the visual words, the spatial information, or the 
specific location information related to the images [69]. Color feature extraction is employed 
in the presented method to extract specific spatial information for features.

4.  Databases
In the evolving domains of computer vision and machine learning, access to high-quality 
datasets is of paramount importance for the development and evaluation of advanced algo-
rithms and models [70]. These datasets, noted for their ability to present diverse and real-
world scenarios, are invaluable resources for researchers and practitioners. Experimentation 
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is performed on ALOT, CIFAR-10, Corel-10k, Tropical Fruits, and Zubud databases. These 
datasets provide efficient image classification and recognition.

4.1.  ALOT
ALOT (A Large Outdoor Text Dataset) datasets provide detection and reorganization of text 
scenes. It provides a vast collection of images from outdoors places or public areas like parks, 
streets and other common settings. ALOT create and assess the algorithms that categorize and 
recognize the text related images. ALOT database main categories are basically the signs of 
streets, fronts of stores, billboards, labels of products and other text related to environment. 
Researchers attain improved performance for the algorithms by using ALOT based text data. 
ALOT provides better detection for text, recognizes the signs of streets, and to analyze the 
documents. ALOT dataset is applied in text related research and performs well on illumina-
tion changing, weather forecasting, and text orientations. Fig 11 shows the sample images for 
ALOT dataset.

Fig 11.  ALOT Datasets sample images [ 28].

https://doi.org/10.1371/journal.pone.0317863.g011

Fig 10.  Bag of words and image indexing.

https://doi.org/10.1371/journal.pone.0317863.g010

https://doi.org/10.1371/journal.pone.0317863.g011
https://doi.org/10.1371/journal.pone.0317863.g010
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4.2.  Cifar-10
Cifar-10 is another trendy dataset that provides image classification. It comprises on ten 
different classes having 60,000 color images of size 32x32. The dataset employed in applica-
tions designed for image classification to assess standard machine learning and deep learning 
methods. Cifar-10 dataset contain ten category sets of Ships, Frogs, Birds, Trucks, Cats, Deer, 
Dogs, Airplanes, Horses, and Automobiles. It tests algorithms designed for image classifica-
tion. Cifar-10 dataset provides fast testing and evaluates the models effectively to categorize 
and represent the images. Fig 12 shows the sample images for Cifar-10 dataset.

4.3.  Corel-10k
Corel-10k dataset is another useful dataset for image classification and representation. This data-
set has 10,000 images of 100 different categories. These images are based on various  
domains.Corel-10k deals with noisy data and imprecise category problems. These 100 categories 
in Corel-10k datasets are based on Music, Animals, Cars, Sports, People, Architecture, Food, 
Flowers, Art, Landscapes, and Electronics. Corel-10k is effective dataset for more complicated 
and diverse set of categorization. Diverse set of categories makes it suitable and robust dataset to 
test various classification methods. Fig 13 shows the sample images for Corel-10k dataset.

Fig 12.  Cifar-10 Datasets sample images [ 29].

https://doi.org/10.1371/journal.pone.0317863.g012

Fig 13.  Corel-10k Datasets sample images [ 30].

https://doi.org/10.1371/journal.pone.0317863.g013

https://doi.org/10.1371/journal.pone.0317863.g012
https://doi.org/10.1371/journal.pone.0317863.g013
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4.4.  Tropical-Fruits
Tropical-Fruits dataset identifies and evaluates the quality of fruits. The dataset comprises on 
a wide range of categories for tropical fruits of various environments. It is mainly employed in 
agriculture based research. Some categories of Tropical-Fruits datasets are Sliced Fruits, Citrus 
Fruits, Apples, Exotic Tropical Fruits, Market Displays and Bananas. Fruit identification and 
classification methods are created and tested using this dataset. Fruits identification based 
methods are very vitalinsalient applications designed for agricultural and their quality assess-
ment. Diverse set of fruit types makes it a suitable dataset for conducting research on fruits 
images recognition. Fig 14 shows the sample images for Tropical-Fruits dataset.

4.5.  Zubud
Indoor scenes classification is basically provided through a database called Zubud. It has 
11,000 images in the database that are divided into 11 different classes for interior scenes. 
Zubud is employed for smart homes technologies. It mainly provides recognition of scenes 
and navigates the indoors. Bar, Living Room, Kitchen, Office, Bedroom, Kids Room, Bath-
room, Restaurant, Clothes Store, Gym, and Bookstore are some of the Zubud categories. 
Zubud train and assess models that identify and categorize scenes inside of enclosed environ-
ments in the domains of robotics, smart homes, and indoor navigation. Zubud offers a con-
trolled environment for investigating indoor scene recognition and classification that makes 
it crucial component for practical applications in these fields. Fig 15 shows the sample images 
for Zubud dataset.

5.  Results and Discussions
The presented innovative approach for image retrieval is evaluated through a series of criteria 
that systematically evaluate recall, precision, and overall efficiency. These measures are crucial 
for analyzing method's effectiveness in comparison to five common benchmarks. The metrics 
along with the corresponding mathematical expressions are:

Precision quantifies the percentage of relevant results among the ones that were obtained. 
The calculation involves dividing the total number of matched, relevant images (R) by the 
total number of retrieved images (S) [71].

Fig 14.  Tropical-Fruits Datasets sample images [ 31].

https://doi.org/10.1371/journal.pone.0317863.g014

https://doi.org/10.1371/journal.pone.0317863.g014
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	 Precision= ∑
∑
R
S

	 (10)

The Average Precision (AP) is measured at each retrieval cycle as the level of precision for 
every image class (C). To calculate the results, each category precision values are added and 
then the sum is divided by the total number of iterations [71].

	 AP
Total Iterations

=
∑CiP 	 (11)

Average Retrieval Precision (ARP) provides comprehensive perceptive for precision. It is cal-
culated using AP rates for each image in that class relating to total of all the classes. It contains 
the precision of all categories and are added gradually to the first class [71].

	 ARP
Total Categories

=
∑CiAP 	 (12)

Recall is an important metric for effective retrieval evaluations. It is the ratio of relevant and 
retrieved results to the related results. It is calculated as the sum of retrieved and relevant 
results and then divided by related results [72].

	 Recall= ∑ +∑
∑
S R

R
	 (13)

Average Recall (AR) is the recall in every image class (C) over numerous iterations. It quanti-
fies the value of recall within each class [72].

	 AR
Total Iterations

=
∑CiR 	 (14)

Average Retrieval recollection (ARR) is similar to ARP for the precision. ARR provides a 
broader level of recall evaluation.AR rate is measured for each image class in relation to the 
sum of all of the categories and values for recall at each category are gradually added to the 
first category [72].

	 ARR CiAR
Total Categories

=
∑ 	 (15)

Fig 15.  Zubud Datasets sample images [ 32].

https://doi.org/10.1371/journal.pone.0317863.g015

https://doi.org/10.1371/journal.pone.0317863.g015
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AP values are summed up for each category and result is divided by the total number of cat-
egories to calculate Mean Average Precision (MAP). MAP provides a broader level view for 
precision performance [71].

	 Mean Average Precision =
Total Categories
∑AP C@ 	

�
(16)

Mean Average memory (MAR) provides a complete evaluation of recall performance. It is 
calculated by summing up AR values for each category and then dividing the results by the 
total number of categories [71].

	 Mean Average Recall
Total Categories

=
∑AR C@ 	

� (
17

)

F-measure also called the composite metric evaluates the overall performance of retrieval. It 
is calculated by computing the harmonic mean of precision and recall for each category of 
images [73].

	 F-measure =
2* V*U

V+U
( )
( )

	
� (

18
)

The image retrieval time for proposed method varies, ranging from approximately 0.4 to 2.35 
seconds. This variation is mainly subjective to the factors of image dimensions and size of the 
dataset. Experimentation's were conducted on a core-i7 processor running at 2.5 GHz with 
8GB of RAM.“

Performance evaluation of the presented method is completed through various datasets. 
Experiments are conducted on different datasets, including ALOT, Tropical-Fruits, Zubud, 
Cifar-10, Corel-10k to evaluate how effectively presented approach handles complex images. 
The presented method along with multi level fusion on CNNs consistently achieves higher 
average precision results for complex images.

5.1.  Experimentation on ALOT
The ALOT dataset is widely recognized for its intricate structure and is employed as a 
rigorous benchmark for image classification, particularly in the case of textures. There 
are 250 classes in this dataset, and each class has 100 samples and 384 by 235 pixel pic-
tures. It is useful for content-based image retrieval tasks. The ALOT dataset contains a 
large number of other semantic classifications, such as clothes, spices, leaves, cigarettes, 
sands, fruits, vegetables, stones, seashells, textiles, coins, seeds, embossed fabrics, bubbles, 
little repeating patterns, and more. These diverse classes provide the necessary textural 
details, various objects, shapes, and spatial properties needed for effective image classi-
fication. This extensive dataset assess the presented method's efficiency and adaptabil-
ity. It demonstrates its ability to handle texture images with various features from the 
same semantic categories, such as large, complex, overlaid, textured, background, and 
foreground elements. The presented method uses color coefficients, multi-scale filters, 
Gaussian filters, L2 normalization stages, and other techniques to yield meaningful results 
for a range of textures in images. To accurately categorize images, multi-scale filtering is 
applied at varying scale spacing and levels to produce excellent average precision ratios 
for distinct texture images.
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Fig 16 shows Average Precision rate (%) for each category of objects in ALOT database for 
multiple CNN architectures. Using ResNet-101, the presented approach obtains impressive 
AP values of up to 100% in most ALOT categories. Interestingly, the presented method per-
forms better in a variety of image categories with different forms and colors. Images are suc-
cessfully identified by combining RGB coefficients, spatial mapping, multi-scale filtering, and 
scale spacing with CNN features. Presented method is tested on many images with a variety 
of hues that belong to categories including fruits, vegetables, spices, and seeds. In particular, 
AP rates of more than 90% with InceptionNet v2, more than 80% with GoogLeNet, more than 
60% with DenseNet and almost 40% with AlexNet are obtained for these image classes.

Fig 17 depicts the Average Recall (%) for ALOT database categories. Applied to several 
ALOT picture groups, the presented method regularly achieves performance levels above 90% 
with ResNet-101 and above 80% with InceptionNet v2.Moreover, high accuracy is achieved 
for classification and exploration of semantic groupings comprising vertical lines, bubble tex-
tures, embossed textiles, horizontal lines, small repetitive patterns, and other visually unique 
features.

It is clear that the presented method performs exceptionally well in obtaining outcomes in 
a wide range of image categories, exhibiting clear color and shape differences. The presented 
method shows accurate and effective image classification by carefully applying thresholding, 
vectorization techniques, and combining color vectors with CNN deep features.

Fig 18(a) shows Average Retrieval Precision (ARP) and Fig 18(b) shows Average Retrieval 
Recall (ARR) rates for ALOT over 250 categories. The results reveal that the majority of 
categories achieved ARP rates of over 85%, as depicted in Fig 18(a). However, one category 
showed a 70% ARP rate for the presented method. Fig 18(b) highlights the particularly high 
ARR rate observed for specific image categories. Results show exceptional mean average pre-
cision rates for the leaf, stone, and fabric categories, all achieving ARP rates ranging from 90% 
to 100%.Top of Form
Fig 19 represents the F-measure results that range from 25% to 30% for all image categories. 
Fig 20 and 21 depict the mean Average Precision and mean Average Recall rates for ALOT 
categories. The presented method showed Highest mean Average Precision for AlexNet and 
almost 80% for the ResNet-101. InceptionNet v2 and GoogleNet attain highest mean Average 
Recall rates for the ALOT data set. It effectively categorize texture images within semantic 
groups that share similar features such as large, complex overlays, textures, and background 
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Fig 16.  ALOT Database Average precision (%).
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Fig 17.  ALOT Database Average Recall (%).

https://doi.org/10.1371/journal.pone.0317863.g017

(a)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 8

1
5

2
2

2
9

3
6

4
3

5
0

5
7

6
4

7
1

7
8

8
5

9
2

9
9

1
0
6

1
1
3

1
2
0

1
2
7

1
3
4

1
4
1

1
4
8

1
5
5

1
6
2

1
6
9

1
7
6

1
8
3

1
9
0

1
9
7

2
0
4

2
1
1

2
1
8

2
2
5

2
3
2

2
3
9

2
4
6

)
%(noisicerPlaveirte

Regarev
A Categories

ALOT-Average Retrieval Precision (ARP) 
AlexNet DenseNet GoogleNet InceptionNet v2 ResNet 101

(b)

0

0.5

1

1.5

2

2.5

1 8

1
5

2
2

2
9

3
6

4
3

5
0

5
7

6
4

7
1

7
8

8
5

9
2

9
9

1
0

6

1
1
3

1
2
0

1
2
7

1
3
4

1
4
1

1
4
8

1
5
5

1
6
2

1
6
9

1
7
6

1
8

3

1
9
0

1
9
7

2
0
4

2
1
1

2
1
8

2
2
5

2
3
2

2
3
9

2
4
6

)
%(llace

Rlaveirte
Regarev

A

Categories

ALOT-Average Retrieval  Recall (ARR) 
AlexNet DenseNet GoogleNet InceptionNet v2 ResNet 101

Fig 18.  (a) ALOT Average Retrieval Precision (%). (b) ALOT Average Retrieval Recall (%).
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and foreground objects. This is facilitated through the application of fixed-length filtering, 
recursive masking, color vectors, and L2 normalization steps. Model demonstrates significant 
capabilities in classifying images with diverse textures by utilizing CNN deep features in con-
junction with Gaussian derivatives, thresholding, and corner detection techniques.

5.2.  Experimentation on Tropical-Fruits
Fig 22 presents the notable performance metrics of the presented method on the Tropical 
Fruits database, including AP, AR, f-measure, and ARP, ARR, MAP and MAR rates. It's worth 
mentioning that presented approach achieves the highest results for most images within the 
Tropical Fruits categories, particularly those with similar shapes and colors. This success is 
attributed to the integration of spatial mapping, L2 normalization, color coefficients, and mul-
tilevel scaling with CNN features, enabling effective classification of tropical fruit images.
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Fig 20.  ALOT Mean Average Precision (%).
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Fig 22 represents AP and Fig 23 show AR for Tropical Fruits database over various CNN 
benchmarks. Remarkably, presented method achieves exceptionally high rates, particularly 
with AlexNet, in 12 out of 15 tropical fruit classes. Additionally, it reports the highest AP rate 
when ResNet-101 for the Spanish Pear and Fuji-apple and Kiwi categories. In particular, AP 
rates of more than 95% with AlexNet, more than 90% with DenseNet and GoogleNet,  
ResNET-101 and almost 85% with InceptionNet v2 are obtained for these image classes. Rela-
tive result values are also presented in the Table 1.

Fig 24(a) represents ARP and Fig 24(b) represents the rates for ARR for Tropical Fruits 
database. Significant ARP rates particularly with AlexNet and DenseNet, for most categories, 
showcasing the robustness of presented method for the tropical fruits dataset.

Fig 25(a) depicts the F-measure results for the Tropical Fruits database. Results demon-
strate presented approach exhibits outstanding performance across the Tropical Fruits 
database, particularly with AlexNet, DenseNet and GoogLeNet. MAP and MAR rates using 
various CNN are shown in Fig 25(b) and 25(c). It demonstrates a remarkable MAP of 95% 
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Fig 21.   ALOT Mean Average Recall (%).
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using AlexNet, 93% using DenseNet and 92% using GoogLeNet and 90% using AlexNet for 
the tropical fruits dataset.

5.3.  Experimentation on Cifar-10
In Figs 26 and 27, the presented method's AP and AR performance is shown for the Cifar-10 
dataset using AlexNet, DenseNet, and GoogleNet, InceptionNetv2 and ResNet-101. AlexNet 
and DenseNet show the highest AP ratios across most categories within the Cifar-10 dataset. 
The presented method achieves AP rates above 85% with AlexNet and DenseNet and no less 
than 75% with InceptionNet v2 across various semantic groups in the dataset. This approach 
excels, especially in scenarios involving small, simulated backgrounds with multiple objects, 
owing to its strong object recognition capability. Additionally, the presented method achieves 
remarkable AP ratios in classifying images with cluttered, complex, and overlapping objects.

In the context of the Cifar-10 database, presented approach delivers remarkable ARP 
ratios, particularly using AlexNet and DenseNet for categories like airplanes, dogs, frogs, 
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Fig 23.  Tropical-Fruits Database Average Recall (%).

https://doi.org/10.1371/journal.pone.0317863.g023

Table 1.  The Average Precision, Average Recall Result for Tropical-Fruits.

Tropical-Fruits (AP,AR Results)
Category AlexNet DenseNet GoogleNet InceptionNet v2 ResNet-101
orange 1 0.1 0.9 0.11 1 0.1 0.7 0.14 0.9 0.11
taiti_lime 1 0.1 1 0.1 1 0.1 0.7 0.14 0.9 0.11
diamond_peach 0.9 0.11 1 0.1 1 0.1 0.8 0.13 0.8 0.13
watermelon 1 0.1 1 0.1 1 0.1 0.9 0.11 0.7 0.14
honneydew_melon 1 0.1 0.7 0.14 0.8 0.13 1 0.1 0.9 0.11
spanish_pear 0.9 0.11 0.8 0.13 0.9 0.11 0.9 0.11 1 0.1
plum 1 0.1 0.8 0.13 0.8 0.13 0.8 0.13 0.9 0.11
onion 1 0.1 1 0.1 0.9 0.11 1 0.1 0.8 0.13
asterix_potato 1 0.1 1 0.1 1 0.1 1 0.1 0.9 0.11
kiwi 0.8 0.13 1 0.1 0.8 0.13 0.8 0.13 1 0.1
granny_smith_apple 0.8 0.13 0.9 0.11 0.9 0.11 0.9 0.11 0.9 0.11
cashew 1 0.1 1 0.1 1 0.1 0.9 0.11 0.9 0.11
nectarine 1 0.1 1 0.1 0.8 0.13 1 0.1 1 0.1
fuji_apple 1 0.1 1 0.1 1 0.1 0.9 0.11 1 0.1

https://doi.org/10.1371/journal.pone.0317863.t001
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ships, and birds, as evidenced in Fig 28. Moreover, in Fig 29, across other categories, method 
achieves consistent performance with above 85% average retrieval recall ratios highlighting its 
effectiveness within the dataset. The results demonstrate improved ARP rates for DenseNet 
and AlexNet employed extracted features.

In Fig 30(a), the presented approach reports outstanding f-measure ratios for images 
characterized by large, mimicked, and complex foreground and background elements. The 
method demonstrates significant f-measure ratios across a range of scenarios when utilizing 
DenseNet, AlexNet, GoogLeNet, InceptionNet, and ResNet-101 architectures.

Specifically, in Fig 30(b) the presented approach achieves a mean average precision of more 
than 85% with AlexNet and DenseNet and InceptionNet v2 for the Cifar-10 dataset. Addi-
tionally, presented method delivers competitive performance with AlexNet and DenseNet, 
achieving notable F-measure ratios in various image contexts.
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Fig 30(c) shows the mean average Recall ratio for the Cifar-10. The model achieves MAR 
values of 0.11 with AlexNet and DenseNet, 0.115 with InceptionNet v2 and, and 0.117 with 
GoogleNet on the Cifar-100 dataset. Presented method demonstrates equal proficiency in 
handling dataset harmonization, regardless of image size, effectively addressing both large and 
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Fig 25.  (a). Tropical-Fruits F-measure. (b). Tropical-Fruits MAP. (c). Tropical-Fruits MAR.
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small images. Moreover, it excels in processing complex images with intertwined foreground 
and background content, ensuring accurate interpretation even in scenarios where objects are 
indistinct or overlapping.

5.4.  Experimentation on Corel-10k
Fig 31 presents average precision results for Corel-10k. It gives more than 85% accuracy using 
AlexNet, and 70% with the DenseNet, AlexNet and InceptionNet. It effectively categorizes 
images from diverse groups, including various foregrounds and backgrounds, complex blobs, 
overlays, and cluttered scenes. This is achieved through the use of color coefficients, distance 
measures, L1 and L2 norms, color signatures, architectural bonding, signature influencing, 
dataset harmonization, thresholding, factoring, and regioning techniques.

Fig 32 shows the average Recall results for Corel-10k over AlexNet, DenseNet, Inception-
Net v2, and GoogLeNet and ResNet-101 architectures. Significantly, presented approach 
achieves outstanding average Recall across most classes within Corel-10k, demonstrating 
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Fig 27.  Cifar-10 Database Average Recall (%).
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dominance due to its incorporation of color channeling, auto-correlation, L2 normalization, 
shape parameters, and straddling.

Table 2 shows the ARP and ARP rates for the Corel-10k. Results show that AlexNet gives 
90% ARP, DenseNet and Inception 80% ARP for the categories of Corel-10k. The results also 
show above 0.11 ARR results with AlexNet, above 0.2 ARR ratios by Dense Net, 0.25 ARR 
results with InceptionNet and above 0.3 using ResNet-101 for Corel-10k. The presented 
method here operates on color coefficients by applying suitable displacements at L1 and L2 
levels. However, it does not address the interpretability aspects of feature sets, as it only selects 
the heads connected to the signature-influencing dimension.

Fig 33 reports f-measure ratios Corel-10k dataset images with varying shapes and textures 
that share common patterns, shapes, and colors, while other image groups encompass diverse 
object patterns.

dog horse
automo

bile
ship deer frog  bird  truck cat

AlexNet 0.7 0.7 0.73 0.78 0.8 0.83 0.86 0.88 0.89

DenseNet 0.7 0.8 0.77 0.8 0.82 0.83 0.86 0.88 0.89

GoogleNet 0.7 0.7 0.73 0.75 0.9 0.8 0.83 0.85 0.87

InceptionNet v2 0.7 0.7 0.73 0.9 0.8 0.82 0.84 0.86 0.88

ResNet 101 0.7 0.7 0.73 0.9 0.8 0.82 0.83 0.85 0.87
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Fig 28.  Cifar-10 Database Average Retrieval Precision (%).
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Fig 29.  Cifar-10 Database Average Retrieval Recall (%).
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Results show83% MAP using AlexNet, 70% MAP with DenseNet, ResNet-101 and Incep-
tionNet v2 and more than 60%with GoogleNet on the Corel-10k dataset in Fig 34 (a). Addi-
tionally, the MAR graph in Fig 34 (b) illustrates values of 0.12 MAR for AlexNet, 0.16 MAR 
for DenseNet, InceptionNet v2, andResNet-101, and 0.17 MAR for GoogleNet on the same 
dataset.

5.5.  Experimentation on Zubud
Fig 35 illustrates notable AP and Fig 36 shows AR outcomes achieved with the Zubud dataset. 
It’s observed that the presented approach demonstrates enhanced AP performance across 
various image classes within the dataset, characterized by distinct colors, textures, and shapes. 
Notably, the presented approach attains AP rates surpassing 90% with DenseNet across the 
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0.00

0.05

0.10

0.15

0.20

0.25

F-
M

ea
su

re
(%

)

F-Measure (Cifar-10)

0.88 0.88

0.86

0.87

0.86

0.855

0.86

0.865

0.87

0.875

0.88

0.885

0.89

0.895)
%(

noisicerPegarev
A

nae
M

Mean Average Precision(Cifar-10)

0.114 0.114

0.117

0.115

0.116

0.112

0.113

0.114

0.115

0.116

0.117

0.118

0.119

M
ea

n 
A

ve
ra

ge
 R

ec
al

l(%
)

Mean Average Recall (Cifar-10)

Fig 30.  (a) Cifar-10 Database F-Measure. (b) Cifar-10 Database Mean Average Precision (%). (c) Cifar-10 Database Mean 
Average Recall (%).

https://doi.org/10.1371/journal.pone.0317863.g030

https://doi.org/10.1371/journal.pone.0317863.g030


PLOS ONE | https://doi.org/10.1371/journal.pone.0317863  March 18, 2025 32 / 42

PLOS ONE Deep image features sensing with multilevel fusion for complex convolution neural networks

majority of image groups in Zubud. Additionally, results indicate AP rates exceeding 85% 
with AlexNet, over 80% with ResNet-101, and above 77% with GoogleNet across most seman-
tic groups within Zubud.

In Fig 37, the presented model showcases the f-measure results obtained across various 
scenarios within the Zubud dataset. Specifically, when utilizing DenseNet, the model 
achieves f-measure ratios ranging from 25% to 30%. Similarly, with ResNet101, f- 
measure ratios fall within the range of 18% to 24%, while GoogLeNet yields ratios of 19% 
to 24%. Additionally, when employing AlexNet, the f-measure rates range from 19% to 
27%. These results are indicative of the model's performance in detecting and classifying 
large, cluttered, overlaid, complex, and color-dominant objects present within the Zubud 
dataset.

MAP is shown in Fig 38 and MAR results are shown in Fig 39.Results highlight that the 
method shows 83% ARP using GoogleNet, 75% ARP with DenseNet, AlexNet and AlexNet 
101 and more than 70% with InceptionNet v2 on the Zubud dataset.
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Fig 32.  Corel-10k Database Average Recall (%).
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Fig 31.  Corel-10k Database Average Precision (%).
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Table 2.  The ARP, ARR Results for Corel-10k.

Corel-10k (ARP,ARR Results)
Category AlexNet DenseNet GoogleNet InceptionNet v2 ResNet-101
2 0.73 0.14 0.80 0.15 0.53 0.25 0.87 0.12 0.90 0.11
3 0.70 0.14 0.70 0.18 0.30 0.33 0.80 0.14 0.85 0.12
4 0.70 0.14 1.00 0.10 0.30 0.33 1.00 0.10 0.90 0.11
5 0.85 0.12 1.00 0.10 0.65 0.22 0.65 0.22 0.85 0.12
6 0.90 0.11 0.93 0.11 0.67 0.19 0.73 0.18 0.73 0.15
7 0.88 0.12 0.85 0.13 0.65 0.19 0.75 0.17 0.70 0.15
8 0.88 0.12 0.82 0.13 0.58 0.21 0.66 0.20 0.68 0.16
9 0.88 0.12 0.75 0.15 0.63 0.20 0.72 0.18 0.72 0.15
10 0.90 0.11 0.60 0.17 0.90 0.11 0.90 0.11 0.50 0.20
11 0.90 0.11 0.70 0.16 0.68 0.18 0.69 0.19 0.70 0.15
12 0.87 0.12 0.67 0.17 0.70 0.17 0.66 0.20 0.69 0.15
13 0.82 0.13 0.67 0.17 0.71 0.17 0.65 0.20 0.67 0.16
14 0.81 0.13 0.66 0.17 0.71 0.16 0.67 0.19 0.65 0.17
15 0.78 0.14 0.68 0.16 0.73 0.16 0.68 0.18 0.67 0.16
16 0.75 0.15 0.70 0.16 0.75 0.15 0.70 0.18 0.67 0.16
17 0.76 0.15 0.70 0.16 0.76 0.15 0.71 0.17 0.66 0.16
18 0.77 0.15 0.72 0.15 0.75 0.15 0.73 0.17 0.69 0.16
19 0.77 0.15 0.71 0.16 0.76 0.15 0.75 0.16 0.70 0.15
20 0.76 0.15 0.70 0.16 0.78 0.15 0.76 0.16 0.70 0.15
21 0.76 0.15 0.71 0.16 0.78 0.15 0.76 0.16 0.71 0.15
22 0.76 0.15 0.72 0.15 0.79 0.14 0.76 0.16 0.69 0.15
23 0.77 0.15 0.73 0.15 0.81 0.14 0.77 0.16 0.71 0.15
24 0.77 0.14 0.72 0.15 0.80 0.14 0.78 0.15 0.72 0.15
25 0.78 0.14 0.70 0.17 0.78 0.15 0.77 0.15 0.72 0.15
26 0.78 0.14 0.70 0.17 0.77 0.15 0.76 0.16 0.72 0.15
27 0.79 0.14 0.71 0.16 0.77 0.15 0.74 0.16 0.71 0.15
28 0.79 0.14 0.70 0.16 0.76 0.15 0.74 0.16 0.71 0.15
29 0.79 0.14 0.70 0.17 0.75 0.16 0.74 0.16 0.71 0.15
30 0.80 0.14 0.69 0.17 0.74 0.16 0.74 0.16 0.70 0.15
31 0.79 0.14 0.69 0.17 0.73 0.16 0.73 0.16 0.69 0.16
32 0.79 0.14 0.69 0.17 0.72 0.16 0.74 0.16 0.69 0.16
33 0.80 0.14 0.69 0.16 0.72 0.16 0.72 0.17 0.69 0.16
34 0.80 0.13 0.69 0.16 0.71 0.16 0.71 0.17 0.70 0.15
35 0.80 0.14 0.68 0.17 0.70 0.16 0.71 0.17 0.71 0.15
36 0.80 0.14 0.67 0.17 0.70 0.16 0.70 0.17 0.72 0.15
37 0.80 0.14 0.67 0.17 0.68 0.17 0.70 0.17 0.71 0.15
38 0.79 0.14 0.67 0.17 0.68 0.18 0.71 0.17 0.71 0.15
39 0.80 0.14 0.68 0.17 0.68 0.17 0.71 0.17 0.70 0.16
40 0.80 0.13 0.68 0.17 0.67 0.18 0.71 0.17 0.70 0.16
41 0.81 0.13 0.69 0.17 0.68 0.17 0.71 0.17 0.71 0.15
42 0.81 0.13 0.68 0.17 0.68 0.17 0.71 0.17 0.71 0.15
43 0.82 0.13 0.69 0.16 0.69 0.17 0.71 0.17 0.72 0.15
44 0.81 0.13 0.70 0.16 0.69 0.17 0.72 0.16 0.72 0.15
45 0.81 0.13 0.70 0.16 0.70 0.17 0.72 0.16 0.72 0.15
46 0.81 0.13 0.71 0.16 0.70 0.17 0.72 0.16 0.72 0.15
47 0.82 0.13 0.71 0.16 0.70 0.17 0.71 0.16 0.72 0.15

(Continued)
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Corel-10k (ARP,ARR Results)
Category AlexNet DenseNet GoogleNet InceptionNet v2 ResNet-101
48 0.82 0.13 0.71 0.16 0.70 0.17 0.72 0.16 0.72 0.15
49 0.82 0.13 0.72 0.16 0.70 0.17 0.72 0.16 0.71 0.15
50 0.83 0.13 0.72 0.16 0.70 0.17 0.72 0.16 0.71 0.15
51 0.82 0.13 0.71 0.16 0.70 0.17 0.72 0.16 0.72 0.15
52 0.82 0.13 0.71 0.16 0.71 0.16 0.72 0.16 0.72 0.15
53 0.82 0.13 0.70 0.16 0.70 0.17 0.73 0.16 0.71 0.16
54 0.82 0.13 0.70 0.16 0.70 0.17 0.72 0.16 0.72 0.16
55 0.81 0.13 0.71 0.16 0.70 0.16 0.73 0.16 0.71 0.16
56 0.81 0.13 0.70 0.17 0.70 0.16 0.73 0.16 0.71 0.16
57 0.81 0.13 0.70 0.16 0.69 0.17 0.73 0.16 0.71 0.16
58 0.81 0.13 0.70 0.16 0.68 0.17 0.73 0.16 0.71 0.16
59 0.81 0.13 0.69 0.17 0.68 0.17 0.72 0.16 0.71 0.16
60 0.82 0.13 0.69 0.17 0.69 0.17 0.72 0.16 0.72 0.16
61 0.82 0.13 0.69 0.17 0.69 0.17 0.72 0.16 0.72 0.16
62 0.82 0.13 0.69 0.17 0.68 0.17 0.71 0.16 0.71 0.16
63 0.82 0.13 0.69 0.17 0.69 0.17 0.71 0.16 0.70 0.17
64 0.82 0.13 0.70 0.17 0.69 0.17 0.71 0.16 0.70 0.16
65 0.82 0.13 0.69 0.17 0.68 0.18 0.72 0.16 0.70 0.16
66 0.82 0.13 0.70 0.17 0.68 0.18 0.71 0.16 0.70 0.16
67 0.82 0.13 0.70 0.17 0.68 0.18 0.71 0.16 0.71 0.16
68 0.82 0.13 0.70 0.16 0.68 0.18 0.71 0.17 0.71 0.16
69 0.82 0.13 0.70 0.16 0.68 0.18 0.70 0.17 0.71 0.16
70 0.82 0.13 0.70 0.16 0.68 0.17 0.71 0.17 0.71 0.16
71 0.81 0.13 0.70 0.16 0.69 0.17 0.70 0.17 0.71 0.16
72 0.81 0.13 0.70 0.16 0.68 0.17 0.70 0.17 0.71 0.16
73 0.82 0.13 0.70 0.16 0.68 0.17 0.70 0.17 0.71 0.16
74 0.82 0.13 0.70 0.16 0.68 0.17 0.70 0.17 0.71 0.16
75 0.82 0.13 0.70 0.16 0.68 0.18 0.70 0.17 0.71 0.16
76 0.82 0.13 0.70 0.16 0.68 0.17 0.71 0.17 0.71 0.16
77 0.82 0.13 0.71 0.16 0.68 0.17 0.70 0.17 0.71 0.16
78 0.83 0.13 0.70 0.16 0.68 0.17 0.70 0.17 0.70 0.16
79 0.83 0.13 0.71 0.16 0.68 0.17 0.70 0.17 0.70 0.16
80 0.82 0.13 0.70 0.16 0.68 0.17 0.70 0.17 0.70 0.16
81 0.82 0.13 0.70 0.16 0.68 0.17 0.70 0.17 0.71 0.16
82 0.83 0.13 0.71 0.16 0.69 0.17 0.70 0.17 0.71 0.16
83 0.83 0.13 0.70 0.17 0.69 0.17 0.70 0.17 0.71 0.16
84 0.82 0.13 0.70 0.17 0.68 0.17 0.70 0.17 0.70 0.16
85 0.82 0.13 0.70 0.17 0.68 0.17 0.70 0.17 0.70 0.17
86 0.82 0.13 0.69 0.17 0.67 0.18 0.70 0.17 0.70 0.16
87 0.82 0.13 0.69 0.17 0.67 0.18 0.70 0.17 0.70 0.16
88 0.82 0.13 0.70 0.17 0.68 0.18 0.70 0.17 0.71 0.16
89 0.82 0.13 0.70 0.17 0.68 0.18 0.70 0.17 0.70 0.16
90 0.82 0.13 0.70 0.17 0.68 0.18 0.69 0.17 0.70 0.17
91 0.83 0.13 0.70 0.17 0.68 0.18 0.70 0.17 0.70 0.17
92 0.83 0.13 0.70 0.17 0.68 0.18 0.70 0.17 0.70 0.17
93 0.83 0.13 0.70 0.17 0.67 0.18 0.70 0.17 0.70 0.16

Table 2.  (Continued)
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The presented approach includes innovative feature fusion algorithms to provide com-
bined and larger features sets. Information loss during merging may cause increase in 
experimental costs. The presented methodology minimizes computational costs by ensuring 
the stringent signature lengths. This research is significant since it integrates various compli-
cated CNN architectures that have not been explored collectively in earlier research. Adverse 
architectural bonding along with multiple datasets is formed. The presented method tested on 
multiple datasets provides high precision rates for deep image sensing.

6.  Discussion
In this paper, a novel concept for deep image features sensing with multilevel fusion within 
CNN architectures and particularly towards the cross domain benchmarks is presented. 
CNNs have emerged as a core component of image processing because of abilities to 
automatically learn spatial architectures, but there are several constraints about employing 
CNNs for cross-domain tasks and variability of their applicable data types. To differen-
tiate the presented work from existing CNN-based studies, the focus is on three primary 
areas of innovation. 1) In general, most of the existing CNN architectures utilize pooling 

Corel-10k (ARP,ARR Results)
Category AlexNet DenseNet GoogleNet InceptionNet v2 ResNet-101
94 0.83 0.13 0.70 0.16 0.67 0.18 0.70 0.17 0.70 0.16
95 0.83 0.13 0.71 0.16 0.68 0.18 0.71 0.17 0.71 0.16
96 0.83 0.13 0.71 0.16 0.68 0.18 0.71 0.16 0.71 0.16
97 0.83 0.13 0.71 0.16 0.68 0.18 0.71 0.17 0.70 0.17
98 0.83 0.13 0.71 0.16 0.67 0.18 0.70 0.17 0.71 0.16
99 0.83 0.13 0.71 0.16 0.67 0.18 0.70 0.17 0.71 0.16
100 0.83 0.13 0.71 0.16 0.67 0.18 0.70 0.17 0.71 0.17

https://doi.org/10.1371/journal.pone.0317863.t002

Table 2.  (Continued)
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Fig 33.  Corel-10k F-measure.
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initializing and feature extracting functions within single-domain layers, which hinders 
their potential to incorporate data from different levels of abstraction. However, presented 
method provides a multilevel fusion mechanism which allows the model to accommo-
date for merging features from different layers by providing cross-layer integration thus 
allowing the model to capture details that would have been missing in other approaches. 
This multi-level fusion increases the model's capability to work in various tasks where 
representation at both the aggregate and detailed levels is required. 2) Most of the exist-
ing work on CNN architecture has been done in terms of its performance in a particular 
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Fig 35.  Zubud Database Average Precision (%).
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area which severely restricts the permutation of the CNN model while facing two different 
data sources or domains. The benchmarking approach employed in presented method 
combines a cross-domain methodology to evaluate the CNN robustness across multiple 
imaging types, which helps to fill a crucial research gap that overlooks the CNN applica-
bility to real-world multi-domain imaging. This is especially useful when the model needs 
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Fig 36.  Zubud Database Average Recall (%).
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Fig 37.  Zubud Database F-Measure.
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to be adaptive since it increases the flexibility of CNNs in the cross-domain strategy from 
the conventional applications by domain. Besides cross domain benchmarking, it advances 
CNN to filter out more subtle features by a method of personalized feature sensing. 3) 
Unlike the traditional CNNs, that could ignore lots of differences, the presented model 
is specifically designed to detect and differentiate fine-grained patterns even in complex, 
cross-domain images. This is achieved by adjusting Convolutional layers to focus on 
detailed feature extraction, a method that offers substantial improvements for applica-
tions such as medical imaging and other domains where small, complex details are criti-
cal. These methods are implemented in the presented CNN framework, which addresses 
various limitations of the contemporary CNN research by offering a more flexible and 
effective model for image analysis. Thus, this paper provides important findings for further 
development of CNN methods, especially as it pertains to the introduced multilevel feature 
fusion and the examination of cross-domain performance on more complex and realistic 
problem settings.

0.35 0.36 0.38

0.315
0.35

0

0.1

0.2

0.3

0.4

0.5

Mean Average Precision(Zubud)

Fig 38.  Zubud Database Mean Average Precision (%).

https://doi.org/10.1371/journal.pone.0317863.g038

19%

19%

18%

24%

20%

Mean Average Recall(Zubud)

AlexNet DenseNet

GoogleNet InceptionNet v2

ResNet 101

Fig 39.   Zubud Database Mean Average Recall (%).

https://doi.org/10.1371/journal.pone.0317863.g039

https://doi.org/10.1371/journal.pone.0317863.g038
https://doi.org/10.1371/journal.pone.0317863.g039


PLOS ONE | https://doi.org/10.1371/journal.pone.0317863  March 18, 2025 39 / 42

PLOS ONE Deep image features sensing with multilevel fusion for complex convolution neural networks

7.  Conclusion
Accurate and efficient image retrieval has been vital in the digital age. This research has 
presented a CRIB-based deep image sensing technique with multi-level fusion on CNNs. The 
presented method has provided image identification and categorization based on a fusion of 
image feature descriptors with deep-learned features using CNNs to address image retrieval 
challenges across various semantic categories and datasets. Effective image retrieval and 
classification has been achieved through primitive feature vectors. Deep image sensing and 
synthesis have provided efficient detection of cluttered, overlaid, foreground, and background 
images. Image classification has been achieved through descriptor formation and matching, 
factorization, thresholding, and Gaussian filtering. Experimentation on standard benchmarks 
of Cifar-10, Tropical Fruits, ALOT, Corel-10k, and Zubud has validated the superiority of the 
presented method. Results have concluded that the presented method has correctly classified 
and retrieved images from various complex datasets and has provided high precision and 
recall rates for complex image categories. Fusion of conventional feature extraction methods 
to multilevel CNNs has improved the accuracy of image sensing and retrieval. Future exten-
sions to the presented approach have aimed to make it pertinent to big data and deep cloud-
based architectures.
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