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ABSTRACT
Maize is a staple crop worldwide, essential for food security, livestock feed, and industrial uses. Its health directly impacts ag-
ricultural productivity and economic stability. Effective detection of maize crop health is crucial for preventing disease spread 
and ensuring high yields. This study presents VG-GNBNet, an innovative transfer learning model that accurately detects healthy 
and infected maize crops through a two-step feature extraction process. The proposed model begins by leveraging the visual 
geometry group (VGG-16) network to extract initial pixel-based spatial features from the crop images. These features are then 
further refined using the Gaussian Naive Bayes (GNB) model and feature decomposition-based matrix factorization mechanism, 
which generates more informative features for classification purposes. This study incorporates machine learning models to 
ensure a comprehensive evaluation. By comparing VG-GNBNet's performance against these models, we validate its robustness 
and accuracy. Integrating deep learning and machine learning techniques allows VG-GNBNet to capitalize on the strengths of 
both approaches, leading to superior performance. Extensive experiments demonstrate that the proposed VG-GNBNet+GNB 
model significantly outperforms other models, achieving an impressive accuracy score of 99.85%. This high accuracy highlights 
the model's potential for practical application in the agricultural sector, where the precise detection of crop health is crucial for 
effective disease management and yield optimization.

1   |   Introduction

Corn is also known as maize, and it is one of the most important 
crops providing solutions (Prakash and Venkataramana  2023) 
in many fields for humans, animals, and industries. In its tradi-
tional nutritional classification, it is the primary food for humans 
(Bolatova and Engindeniz 2023), which contains carbohydrates, 

vitamins, and minerals and is employed by most dieters in most 
parts of the world. Maize is commonly used in producing feeds, 
especially livestock feed (Karnatam et al. 2023), for poultry cat-
tle and swine since it is regarded as a major input in this in-
dustry due to its nutritive value. Maize as an aim input is used 
in industry in the manufacturing of (Ranum, Peña-Rosas, and 
Garcia-Casal  2014) renewable energy-producing commodities 
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such as ethanol. Furthermore, it is utilized in culinary, medi-
cal, and building material industries, as well as in the creation 
of sweeteners, starches, and bioplastics. Maize's usefulness in 
so many diverse aspects of life all points to one undeniable fact 
(Kaushal et al. 2023). It is a staple crop that plays a vital role in 
the sustenance of human life as well as in animal feeds and the 
industrial world.

Maize is one of the leading staple crops that is consumed glob-
ally (Vanlalhruaia and Mahapatra  2023), but the crop is sus-
ceptible to several diseases that lead to reduced yields. These 
diseases result in dwarfism cobs with irregular and abnormal 
shapes and low-quality grains, and thus, they lead to significant 
losses to the farmers (Vanlalhruaia and Mahapatra 2023). Sick 
plants may also require more inputs to combat the diseases, 
for instance, through buying fungicides or disease-resistant 
(De Rossi et  al.  2022) seeds, which will exert pressure on the 
available inputs. The effect of these diseases together reduces 
yield by approximately 10%–50% (Kumar et al. 2018) depending 
on the severity of the disease. Hence, disease pressures require 
(Blessing et al. 2022) to be controlled through integrated man-
agement, improved plant breeding, and sustainable agriculture 
in order to prevent yield reduction and the instability of maize 
yields.

In particular, there has been a significant recent development 
(Shoaib et al. 2023) in the use of computational methods, espe-
cially deep learning and machine learning (ML), that has led to 
the improvement in the early identification of diseases affecting 
maize crops (Ouhami et al. 2021). The precision enabled by ML 
and deep learning has especially proven efficient in analyzing 
high-definition images acquired from maize fields (Kusumo 
et  al.  2018). These networks can be trained to distinguish be-
tween what is normal and what is unhealthy as far as plants 
are concerned. They are able to diagnose problems at an early 
stage as compared to traditional practices (Dash, Sethy, and 
Behera  2023). Through incorporating these technologies with 
image-based data, one is able to view large tracts of agricultural 
land in real time, offering farmers specific and relevant infor-
mation with respect to crop status. The early identification of 
these diseases allows for timely measures to be taken to prevent 
extensive crop damage (Chu et  al.  2018), thus improving pro-
duction. Thus, the application of ML and deep learning in the 
agricultural sector makes (Taghizadeh-Mehrjardi et  al.  2020) 
the process of growing maize significantly more efficient and 
sustainable.

VGG-16 (Etehadtavakol, Etehadtavakol, and Ng  2024) and 
Gaussian Naive Bayes (GNB) (Nagaraj and Kumar 2023) clas-
sifier for new transfer features were employed in extracting 
high-level features from the maize crop image. The VGG-16 
architecture, a powerful deep learning model that is effective 
in image recognition tasks, was used to automatically identify 
and extract complex features (Raza et al. 2024) and patterns 
from the images. These high-level features, containing basic 
hallmark features that characterize healthy and diseased 
maize, are recommended as inputs to the GNB classifier. The 
GNB classifier, which is famous for its simplicity as well as 
the ability to work with continuous data (Naseer et al. 2024), 
analyzed these features to classify the images and differen-
tiate between healthy and diseased crops. Using VGG-16 for 

feature extraction and GNB for classification, therefore, in-
corporates the benefits of both deep learning and ML, lead-
ing to a comprehensive model (Khan et al. 2023) for efficient 
disease detection in maize crops. The key contributions of this 
research are:

•	 For the purpose of feature learning from image data, a 
novel transfer learning scheme, VG-GNBNet, is developed. 
For the VG-GNBNet method, the first step involves extract-
ing pixel-based spatial feature data from the image data 
input. Thus, a novel ensemble feature set involving feature 
decomposition-based matrix factorization (non-negative) 
and feature vectors resulting from the GNB classifier is 
constructed.

•	 We deployed ML models using maize crop image data and 
the new features that have been generated. Performance 
comparison is done in comparison to existing works. The 
performance is evaluated using k-fold cross-validation as 
well. Furthermore, we determined the computational com-
plexity of each approach.

The remaining structure of this study is described as follows: 
Section  2 evaluates research works on disease detection in 
crops, whereas Section 3 describes the recommended approach. 
Section  4 examines and explains the experimental outcomes. 
Section 5 presents the study's conclusion.

2   |   Literature Analysis

This review aims to provide comprehensive information on 
what is already known on the subject in an attempt to determine 
gaps, trends, and emerging themes that form the premise of the 
current study.

The conventional process of diagnosing and managing plant 
(Rao et al. 2022) diseases is challenging and usually requires 
consultation with an expert. In this regard, identification and 
detection systems must be more automated to be faster and 
more accurate on a large scale. This work also proposes a new 
technique known as Bi-CNN that can be employed in diag-
nosing plant leaf diseases. This means fine-tuning VGG and 
pruned ResNet models to act as feature extractors and joined 
with fully connected dense networks. With stochastic optimi-
zation, the hyperparameters aid in minimizing in fewer itera-
tions and arrive at a more generalizable solution. In addition, 
the Bi-CNN model implemented in this study can be applied 
to real-life problems. After testing the model using several 
testing standards, the model's accuracy was found to be fairly 
good, with a variance of only 0. The first case showed a 27% 
deviation in accuracy when the test samples were multiplied 
fivefold. With a score of 94, the complete model met the goal 
since it had the highest accuracy compared to all the other 
models.

Various diseases that affect plant leaves can lead to plant failure 
and production (Sibiya and Sumbwanyambe  2019). Many dis-
eases are known to reduce the supply of vegetables and fruits 
on the market and, thus, poor agricultural produce. The liter-
ature has some reports of several laboratory procedures for 
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identifying plant leaf diseases. Diagnosing the leaf diseases 
with these methods was also cumbersome and confined to only 
a few diseases. This research uses the methodology of CNN to 
build a model that will be used to recognize and differentiate 
disease images. Neuroph used the CNN network to identify and 
classify malaria leaf diseases through images captured with a 
smartphone camera. The rational and highly effective approach 
to training enabled the system to be implemented almost effort-
lessly. This resulted in the ability of the constructed model to 
differentiate between three forms of maize leaf diseases and 
healthy maize leaves. The proposed CNN model achieved a 92% 
accuracy score.

The research (Fu et  al.  2022) proposes a new maize spectral 
recovery disease identification model based on HSCNN+, and 
maize disease identification CNN decreased the cost and en-
hanced accuracy for actual field applications. The study also 
provides a spectral recovery model to estimate the HSI data 
from the raw maize RGB data, which is used in the disease de-
tection network as the input data. Hence, by adding more spec-
tral information to the raw data, the HSI reconstruction quality 
is satisfactorily achieved by the proposed framework. This ap-
proach greatly helps in disease recognition from the RGB im-
ages; models show good potential in disease detection. Research 
studies justify the usefulness of the framework in practice and 
prove its effectiveness in detecting infected maize at different 
levels of environmental interference. The CNN achieved a 96% 
accuracy score.

The study (Panigrahi et  al.  2020) employs the supervised ML 
algorithms like Naive Bayes (NB), K nearest neighbor (KNN), 
decision tree (DT), support vector machines (SVMs), and RF for 
the detection of maize leaf diseases. The proposed method en-
tails the use of image data tagged to train a classification model. 
RF classifier showed the best performance in disease identifi-
cation when the model was tested on picture data. Diseases can 
be identified before they occur, and farmers can implement pre-
cautionary measures to prevent maize diseases. However, each 
model in the classification process consists of several constraints 
that may not be necessarily valid for other datasets. Higher-
dimensional datasets and different categorization algorithms 
can be used to implement these models.

Diseases are widely regarded as one of the biggest threats to 
the productivity of maize plants, with the quality and quan-
tity of the product being severely compromised (Jasrotia 
et  al.  2023). The use of leaves can enable the diagnosis of 
these diseases with ease. In this regard, this article outlines a 
suitable technique for diagnosing the existing diseases in the 
maize plant. Based on CNN, the researcher develops a cus-
tomized maize plant disease identification model with input 
data preprocessing that involves CLAHE on each RGB chan-
nel image, performing log transform on the RGB image, and 
finally converting the RGB image to the HSV image. Finally, 
these trained models are checked out with the CNN and the 
SVM models that are not preprocessed. Benchmark experi-
ments were performed on the plant village maize crop data-
set to assess the efficacy of the proposed work. This proposed 
work affords a maximum accuracy level of 96%.

The authors developed an efficient and accurate deep CNN 
model in (Kasinathan and Uyyala 2023) to identify FAW in-
sects in chief crop fields. The detection process involved a 
mask region–based CNN model that was trained with 798 im-
ages and tested with 57 images of Fall Armyworms (FAWs). 
Also, R-CNN, Faster R-CNN, RetinaNet, SSD, and Mask R-
CNN were used. The experimental results further revealed 
that Mask R-CNN using ResNet-101 gave the highest mAP of 
94, but at a considerably lower detection time, it presented an 
accuracy of more than 21% for the FAW insect dataset. In par-
ticular, it took 93 s to test the proposed Mask R-CNN. It is 6 
times faster than R-CNN and 1. It was reported 94 times faster 
than Faster R-CNN. This model is essentially advantageous 
to farmers as it saves time, cuts costs, and has low impacts on 
the environment for FAW detection. In future research, fur-
ther classes will be added to the FAW dataset, and CNN mod-
els will be extended by training them to use YOLO detection 
techniques with increased insect datasets and aerial images of 
crop fields taken from drones.

Plant disease scouting on large areas is expensive and fraught 
with inaccuracies because it is based on personal observation 
(Ishengoma, Rai, and Ngoga 2022). Although there are vari-
ous methods of automatic identification of diseases that have 
proved to increase the accuracy and decrease the detection 
time as compared to the conventional methods, they fail to 
achieve the benefits of immediate detection. The current paper 
presents a new integrated CNN model to enhance the identi-
fication of maize leaves that have been affected by FAW. The 
proposed system incorporates UAV for the automatic capture 
of images of maize leaves, and to classify the images, a parallel 
CNN model with the features of both VGG16 and InceptionV3 
is used. The performance of this hybrid model was com-
pared with four existing CNN models: VGG-16, Inception v3, 
Xception, and ResNet-50. The research shows that the hybrid 
model is more effective and efficient than the other models, 
with an improvement in the training time ranging from 16% 
to 44% and a detection accuracy rate of 96%. It will thus bring 
about better and more efficient results of FAW detection in the 
maize crops than the current manual or the previously devel-
oped automated approaches.

In (Kang et  al.  2023), the authors propose a DL model for 
corn leaf diseases and pest recognition with multi-scale fea-
tures and attention mechanism for three diseases and five 
pest detections. CBAM is incorporated into the model to im-
prove the extraction of specific features that are pertinent to 
pest and disease detection. In order to improve the detection 
of multi-scale objects, a multi-feature fusion (MFF) module 
is incorporated into the neck network, including a weighted 
bidirectional feature fusion network. Outcomes learned from 
the experiment reveal that the model attains a figure of 85% 
accuracy. On the test dataset, the classification accuracy was 
13%, which is 9. In other words, it achieved 59% improvements 
over the original CenterNet model. It is 7% less than the orig-
inal CenterNet model, and it can estimate a 512 × 512 pixel 
image within 0.025 s, thus registering a processing speed of 
23.69 frames per second. This satisfies the conditions of real-
time detection. It can be seen that the proposed model has a 
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higher detection rate when tested under similar conditions to 
Faster R-CNN, YOLOv5, SSD-VGG, and EfficientDet-D0 mod-
els. The created model is integrated into a web application to 
allow users to upload photos for fast detection and assist farm-
ers in monitoring pest and disease occurrences.

Over the last few years, DL algorithms have proved to show 
high levels of accuracy in the diagnosis of crop diseases 
from images. The study (Haque et  al.  2022) presents a new 
DL method to diagnose diseases in maize plants from images 
taken from actual fields in the ICAR-IIMR. The focus was on 
four significant maize diseases: Maydis leaf blight, Turcicum 
leaf blight, Banded leaf, and sheath blight. Preliminary pho-
tographs, which were taken non-intrusively, included digital 
cameras and smartphones with multiple backgrounds. To this 
end, mitigation of the class imbalance problem involved rota-
tion and brightness enhancement of artificial images. Based 
on the diseased images gathered for the study, the researchers 
trained three different architectures using the InceptionV3 
network framework with the aid of a baseline training tech-
nique. The set with the best results has an overall classifica-
tion accuracy of 95%. An average precision of 99% has been 
achieved with an average recall of 95% and attained an im-
pressive accuracy of 96% on a separate test dataset. Besides, 
it was also compared with several pre-trained benchmark 
models, and it was observed that the proposed model outper-
formed those benchmark pre-trained models. This shows that 
the adopted baseline training improves feature extraction and 
learning mechanisms.

Corn is one of the important food grains, and corn diseases have 
severe economic implications and have an impact on food secu-
rity. With the use of smart devices, automatic diagnosis of corn 

diseases is possible, thereby reducing crop losses. The study 
(Mishra, Sachan, and Rajpal 2020) presents a real-time method 
for identifying corn leaf diseases via a deep CNN. The results 
of the deep neural network are improved when hyperparame-
ters and pooling are adjusted and optimized on a GPU system. 
Additional parameters were optimized to make the model more 
suitable for real-time inference. A pre-trained deep CNN model 
was implemented on a Raspberry Pi 3 using an Intel Movidius 
Neural Compute Stick, which has integrated CNN hardware 
blocks. While identifying the disease, the model had an accuracy 
of 88%. The statistic is 46%, which proves the feasibility of the 
concept. This corn plant disease recognition model is intended 
to work on smart single-board computers such as Raspberry Pi, 
smartphones, and drones to demonstrate its applicability for on-
field agricultural diagnostics.

Although the above-discussed works show promising results, 
the review of these works led to several limitations of these 
works, as given in Table 1:

•	 Previous researchers employed traditional approaches to 
identify infected corn plant parts. The employed models in-
clude traditional Ml and DL models without customization 
and optimization.

•	 Several studies utilize limited size datasets, thereby raising 
concerns regarding model generalizability.

•	 Employed DL models have higher computational 
complexity.

•	 There is a need to bring up new improved transfer learn-
ing techniques and reduce the costs of computing as well. 
Moreover, the performance is low.

TABLE 1    |    The literature analysis based on state-of-the-art approaches.

References Year Technique Dataset
Performance 

score (%) Limitations

(Rao et al. 2022) 2022 Bi-CNN Images of plant dataset 94.84 Computational cost 
is increased.

(Sibiya and 
Sumbwanyambe 2019)

2019 CNN Maize leaf dataset 92.0 Classical methods are used.

(Fu et al. 2022) 2022 CNN RGB image dataset 96.0 Classical approach is used.

(Panigrahi et al. 2020) 2020 RF Corn image dataset 91.0 Size of the dataset is low.

(Jasrotia et al. 2023) 2023 CNN and SVM Village plant dataset 92.0 Computational cost 
is increased

(Kasinathan and 
Uyyala 2023)

2023 R-CNN Faw dataset 96.57 Size of dataset is low.

(Kang et al. 2023) 2023 VGG Corn image dataset 94.4 Generalizability of dataset.

(Ishengoma, Rai, and 
Ngoga 2022)

2022 Xception Faw dataset 96.0 Computational cost 
is increased.

(Haque et al. 2022) 2022 Inception ICAR + IMMR dataset 96.0 Classical technique is used.

(Mishra, Sachan, and 
Rajpal 2020)

2020 CNN IOT-based dataset 88.0 Computational cost 
is increased.
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3   |   Proposed Methodology

Figure  1 illustrates the proposed methodology of identifying 
healthy and infected maize crops. At first, we acquired the nor-
mal images and images of the infected ones. The provided image 
dataset was finally subjected to basic processes. Working with 
the preprocessed images resulted in a set of new features. The 
acquired features are split between the training and test data-
sets. A training data of 80% was employed to develop ML and DL 
models, which are described below. Several models were tested 
on the remaining 20% of the data.

3.1   |   Crop Leaf Image Dataset

In this study, we utilized a maize crop image dataset. The 
dataset includes 4226 images of healthy and infected maize 

crop images (Acharya n.d.). Figure 2 shows some images from 
the dataset.

3.2   |   Image Processing

For better analysis, we carried out image processing steps. First, 
we imported maize crop image data and traversed it through the 
folders in the labeled directory. In the process, we endeavored 
to uniformly and proportionally adjust all imported images. As 
for the size consistency of images, the pixel data of the images 
were thus converted onto NumPy arrays and then changed into 
tensors. From the above-mentioned processes, we gave number 
values for the image target labels, labeling healthy as 0 and in-
fected as 1. When this phase was complete, we divided the data-
set into testing and training sets by the distribution of 80% and 
20%, respectively.

FIGURE 2    |    Sample images from the dataset: (a) healthy leaf and (b) infected leaf.

FIGURE 1    |    The innovative approach methodology for the detection of healthy and infected maize plants.
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3.3   |   Novel Proposed Pixel-Based Transfer 
Approach

Figure 3 represents the architectural analysis of the proposed 
approach in this work. In this approach to plant leaf detection, 
we began by extracting spatial features from leaf images using 
the VGG model, leveraging its convolutional layers to capture 
essential visual patterns and structures specific to healthy and 
diseased leaves. These initial features, though informative, 
were further transformed into a refined pixel-based feature set 
using the NB model combined with a feature decomposition-
based matrix factorization (non-negative-NMF) mechanism. 
This step helped to reduce dimensionality while preserving 
the most relevant information for distinguishing between 
different plant leaf conditions. Once the new feature set was 
generated, we deployed various ML models to evaluate their 
performance on the transformed features. By testing multiple 
models, we aimed to identify the model that could best utilize 
the enhanced feature set, thus optimizing accuracy in detect-
ing and classifying plant leaf health status. This scheme not 
only improved classification performance but also demon-
strated the effectiveness of the feature transformation pipeline 
in capturing critical characteristics of plant leaves.

The proposed approach to plant leaf detection incorporates 
several innovative aspects that enhance both the accuracy and 
efficiency of disease classification. By initially using the VGG 
model to extract spatial features, we harnessed the power of 
deep convolutional networks to capture intricate patterns and 
structures within leaf images, which are critical for differen-
tiating between healthy and diseased states. However, instead 
of relying solely on these raw deep features, we introduced a 
novel transformation step by applying GNB in combination 
with NMF. This unique pairing allowed us to refine the feature 
space, reducing dimensionality and highlighting the most diag-
nostically relevant characteristics, which are essential for plant 
health assessment. Moreover, the approach explores multiple 
ML models on the newly transformed feature set to identify 
the best-performing model, thereby optimizing classification 
accuracy. This pipeline not only achieves high performance 
but also demonstrates a versatile, scalable plant leaf disease 
detection that can be adapted to other domains where efficient 
and accurate feature representation is crucial. This innovative 

integration of deep learning with probabilistic transformation 
techniques highlights a sophisticated and robust solution in the 
field of plant pathology. The step-wise algorithm for the pro-
posed model is described in Algorithm 1.

3.4   |   Applied Learning Approaches

This study utilized ML and DL methods for analyzing the 
performance of the proposed transfer learning approach. We 
trained and tested several models such as VGG-16 GNB, KNC, 
LR, and RF.

3.4.1   |   VGG-16

The depth and high performance of the VGG-16 (Thakur, 
Sheorey, and Ojha 2023) model make it suitable for use in differ-
entiating infected from healthy maize crops. This DL model is a 
16-layer model that utilizes CNNs to capture detailed patterns 
in the images of the maize crop. The process starts with the 
input image, referred to as X, that goes through convolution op-
eration pooling and then passes through fully connected layers

where Y matrices 𝑌𝑖𝑗 is the output feature map, 𝑊 is the filter or 
kernel, 𝑏 is the bias term, and 𝑓 is the activation function.

(1)Yi,j = f

(
∑

m,n

Xi+m,j+n ⋅Wm,n + b

)

ALGORITHM 1    |    Proposed pixel-based transfer algorithm.

Input: Leaf images.
Output: Enhanced feature set.
initiate;

1.	 𝑉𝐺𝐺𝑡𝑓 ← 𝑉𝐺𝐺𝑡𝑟𝑎𝑖𝑛𝑖(𝐷𝑙) // 𝐷𝑙 are the Pixel-based transfer 
features and 𝑊𝑓 are input leaf images.

2.	 𝐹𝑃𝑟𝑒𝑑 ← {𝑁𝑀𝐹𝐹 (𝑉 𝐺𝐺𝑡) + 𝐺𝑁𝐵𝐹 (𝑉 𝐺𝐺𝑡𝑓)} // here 
𝑁𝑀𝐹𝐹 (𝑉 𝐺𝐺𝑡𝑓) are the features decomposition and 
𝐺𝑁𝐵𝐹 (𝑉 𝐺𝐺

𝑡𝑓) are probability features set.

3.	 𝐹𝑡 are the combined Pixel-based transfer feature set.
end;

FIGURE 3    |    The architectural workflow of the proposed feature engineering process for healthy and infected maize crop detection.
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Extraction using VGG

Model

Features
Decomposition+Naive

Bayes

Class perdiction
Probability Features

New Transfer Feature

 20487177, 2025, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/fsn3.4655 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [07/01/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



7 of 12

By going through these layers, image features are captured in 
different hierarchical levels to make evaluations on whether the 
images are infected or healthy. Once trained on labeled data, the 
precise nature of the features is interpreted by the subsequent 
fully connected layers to produce a sound classification, which 
can assist in the management of crop diseases.

3.4.2   |   Gaussian Naive Bayes

GNB classifier is suitable for predicting healthy and infected maize 
crops for its reasonable probability model (Zhang et al. 2023). This 
model is based on the assumption that the features of the crops 
are independent and identically normally distributed. In the case 
of a new sample, the Bayes theorem is applied to make the predic-
tion of the class of the sample. For each feature xi of a sample, the 
probability density function is given by

where 𝜇𝑦 and 𝜎𝑦
2 are the mean and variance of the feature in 

class 𝑦.

Calculating these probabilities for each class, the GNB assigns 
the sample to the class with the highest posterior probability 
based on the Bayes theorem. This approach together with the 
assumption of feature independence and data that often adhere 
to the normal distribution makes the classification of the crops 
quite efficient and accurate, thus enhancing the timely manage-
ment of the crops based on observed characteristics.

3.4.3   |   Random Forest

The Rf model is a strong learning model (Khajavi and 
Rastgoo 2023) that is mostly used in the classification of healthy 
and infected crops, in this case, maize crops. This model builds 
a number of DTs when training the system and combines their 
results to enhance the classification rate. Then, each DT is con-
structed with a random sample of the data and a random set of 
features that reduces the overfitting and increases the diversity. 
The output of a new sample is computed as a sum of outputs 
from all trees in the ensemble, often using a voting system

where 𝑇𝑖(𝑥) represents the prediction of the 𝑖-th decision tree for 
the input sample 𝑥 and mode denotes the most frequent predic-
tion among all trees.

This boosts the efficiency of the model in detecting diseases that 
affect the maize crop as well as in making improved decisions 
regarding agriculture.

3.5   |   K Nearest Neighbor Classifier

The KNC model can be considered an easy but effective model 
(Naseer et  al.  2024) that can be used to classify the health 

status of the maize crops, either as infected or not. This non-
parametric approach involves ranking the data and selecting the 
K data points closest to a sample and classification based on the 
most frequently occurring class.

where 𝑥 is the sample to be classified, 𝑥𝑖 is a neighboring data 
point, and 𝑥𝑗 and 𝑥𝑖,𝑗 are the feature values of the sample and the 
neighbor, respectively.

The predicted class 𝑦 ̂ for the sample is then determined by

where 𝑦
𝑖1, 𝑦

𝑖2, …, 𝑦
𝑖𝑘 are the classes of the KNNs. The use of this 

approach facilitates the classification of new samples, which is 
very helpful in cases where one wants to determine the probable 
health state of a maize crop by evaluating on the characteristics 
it displays.

3.5.1   |   Logistic Regression

The LR model is a widely used technique of statistical classifi-
cation to distinguish healthy and diseased maize crops (Zhao 
et al. 2023). This model is expected to predict the possibility of a 
given sample adopting a certain class (healthy or infected) due 
to its features. The probability (𝑦 = 1 ∣ 𝑥) of a sample being classi-
fied as infected, given its features 𝑥, is modeled as

where 𝛽0 is the intercept, and 𝛽1, 𝛽2, …, 𝛽𝑛 are the coefficients for 
the features 𝑥1, 𝑥2, …, 𝑥𝑛.

The logistic function provides a probability of the sample being 
infected, given that the linear combination of features is mapped 
to a value between 0 and 1. The model then classifies the sample 

(2)P
(
xi| y

)
=

1
√
2��2y

exp

(
−

(
xi−�y

)2

2�2y

)

(3)yˆ = ����
{
T
�(x),T�(x), … ,Tn(x)

}

(4)d
(
x, xi

)
=

√∑n

j=1

(
xj−xi,j

)2

(5)yˆ = ����
{
yi�, yi�, … , yik

}

(6)P(y = 1| x) = 1

1 + exp−(�0+�1x1+�2x2+⋯+�nxn)

TABLE 2    |    This study shows hyperparameter values of applied 
models.

Technique Hyperparameter

KNC ‘n_neighbour’ = 5, weights = ‘uniform’, 
metric = ‘minkoski’, leaf_size = 30, p = ‘2’

LR ‘copy_x’ = True fit intercept = ‘True’, 
Positive = ‘False’, Normalize = ‘False’

RF max depth = 20, random_state = 0, 
n estimators = 100, criterion = ‘gini’, 

max features‘sqrt’.

GNB Var-Smoothing,1e-9.

VGG-16 input shape = “256,256,3”, hidden layer 
sizes = (100), activation = ‘sigmoid’, 
Optimizer = ‘Adam’, alpha = 0.0001, 

learning rate = ‘constant’.
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based on this probability with the help of a threshold value that 
may typically equal 0.5. This method is especially useful in bi-
nary classification problems such as diagnosing the health sta-
tus of the maize crop and the use of probability estimates, which 
could be implemented in the decision-making processes in the 
agricultural sector.

3.6   |   Hyperparameter Tunning

Table  2 summarizes the hyperparameters for the ML (Datta 
et al. 2023) and DL models that were fine-tuned. To further im-
prove, we validated each strategy using k-fold cross-validation 
interactive training and testing. As presented in the research re-
sults, precise tuning of the hyperparameters to optimal reveals 
the results we achieved for infected and healthy crop analyses.

4   |   Results and Discussion

In this research, we propose a novel approach toward the fea-
ture extraction for the segmentation of healthy and infected 
maize crops. This section discusses the proposed strategy's 
performance measures and compares them with contemporary 
strategies.

4.1   |   Experimental Setup

Table 3 shows the details of the experimental setup. In the ex-
periment, the Google Colab is utilized as a cloud-based platform 
that implements Jupyter Notebook. The performance of the ML 
approach is measured using several measures, among them 
being accuracy, F1, precision, and recall.

4.2   |   Performance Analysis Using Spatial Features

The experiments are carried out first using the spatial features 
for all ML models. Results given in Table  4 indicate that the 
highest accuracy score of 0.80 is obtained by the RF model while 
other models show poor performance. The performance of RF is 
almost similar for healthy and infected classes, yet better for de-
termining the healthy class. The worst performance is from the 
KNC model that obtains only an accuracy score of 0.58, which 

is lower than GBN, and LR that obtains 0.61 and 0.66 accuracy 
scores.

4.3   |   Performance Analysis With Proposed 
Transfer Learning Approach

Figure 4 shows the VGG-16 results. From the outcomes of ex-
periments, it can be concluded that it can increase the accuracy 
score. The extracted spatial data features of maize crop images 
using VGG-16 are as follows. Several ML algorithms used were 
trained on these spatial features, and the results are provided 
below. As for the results, it is established that the performance 
of the GNB approach was exceptionally high in terms of the ac-
curacy scores. However, of all the investigated models, the only 
one that performed worse was the KNC model. This indicates 
a little improvement in the results. The performance remains 
below the threshold to accurately diagnose infected and healthy 
maize crops. Using the features obtained from VGG-16, a min-
imum accuracy of 98% is obtained with all the Ml models used 
in this study.

Table  5 shows the results of ML models using the proposed 
transfer learning–based features. The outcomes of VGG-16 sug-
gest that it could boost classification accuracy. The features ex-
tracted from the images based on VGG-16 lead to better training 
of models. The findings show that the GNB approach performed 
exceptionally well in comparison to other models in terms of 
achieving high accuracy scores with a 0.9985 accuracy score. Of 
all the models that were assessed, only the RF obtained lower 
scores with a 0.98 accuracy score. Concerning the performance, 
all models registered an accuracy value that ranged from 98% 
and above; the highest results belong to the GNB model with 
a 99.85% accuracy. This posits that using the suggested ap-
proach, a high accuracy can be obtained for maize crop disease 
detection.

Analyzing the confusion matrix of ML models in Figure 5 in-
dicates the performance of the models concerning correct and 
wrong predictions. Correct predictions comprise true positives 
and true negatives for healthy and infected classes, respectively, 
while wrong predictions indicate false positives and false neg-
atives. Results show that KNC and RF have only two wrong 
predictions each, while LR and GNB models make three wrong 
predictions each. These wrong predictions are from a total of 
845 instances that were predicted by each model.

Let us compare the results of the models using spatial features 
and VGG-16-based features proposed in this study. Figure  6 
compares the performance using both features. It shows that for 
the employed models, the proposed transfer learning features 
improve the performance of the models greatly. Compared to 
traditional spatial features, transfer learning features can better 
predict the maize crop disease with great accuracy.

4.4   |   K-Fold Validation Analysis

As indicated in Table 6, we used the k-fold cross-validation tech-
nique with k set to 10. A well-researched strategy would entail 
examining whether the Ml models in place could likely overfit 

TABLE 3    |    The experimental setup information.

Specification Value

Model Dell Intel(R) CPU 3.20Ghz

Programming language Python 3.0

CPU MHZ 3300

Cache volume 5632 KB

RAM 16 GB

CPU core 1

Address volume 64 bits virtual, 48 bits physical
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the data. The validation method was carried out on all the 10 
folds of the dataset. The evaluations for the model show favor-
able results, signifying that the proposed approach produces 
generalizable results and can be used for unseen data for better 
results. Average accuracy scores for KNC, LR, RF, and GNB are 
0.96, 0.99, 0.99, and 0.9925, respectively.

4.5   |   Computational Complexity Analysis

Table 7 displays the computational complexity of the models that 
have been utilized in this research. The analysis implies that RF 
has the highest computational time of 1.2331 s. It is followed by 

the LR models with 0.5377 s. KNC and GNB models are favor-
able concerning computational complexity with 0.0324 s and 
0.0145 s, respectively.

4.6   |   State-of-the-Art Performance Comparison

Table 8 displays a comparative analysis of prior relevant state-
of-the-art research. Several approaches worked on crop disease 
detection using Ml and DL approaches, as well as a combination 
of both (Jasrotia et al. 2023; Kasinathan and Uyyala 2023; Haque 
et al. 2022; Mishra, Sachan, and Rajpal 2020). The focus of such 
studies is to enhance classification accuracy and improve the 

TABLE 4    |    Performance analysis using spatial features.

Model Accuracy Class Precision Recall F1 score

KNC 0.58 Healthy 0.54 0.75 0.63

Infected 0.67 0.43 0.53

Average 0.61 0.58 0.57

GNB 0.61 Healthy 0.66 0.34 0.45

Infected 0.60 0.85 0.70

Average 0.63 0.61 0.58

LR 0.66 Healthy 0.63 0.64 0.63

Infected 0.68 0.67 0.68

Average 0.66 0.66 0.66

RF 0.80 Healthy 0.82 0.72 0.77

Infected 0.78 0.87 0.82

Average 0.80 0.80 0.80

FIGURE 4    |    Training and validation performance of VGG-16.

(a) Training loss (b) Validation loss

(c) Train accuracy (d) Validation accuracy
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robustness of the model. Performance comparison shows that 
the proposed transfer learning–based feature engineering ap-
proach helped the models get better accuracy than existing 
approaches.

5   |   Conclusion and Future Work

This research work synthesizes the use of deep learning and ML 
models to assess healthy and infected maize crop plants. In this 
study, we present VG-GNBNet, an approach for generating pixel-
based spatial features from image data using transfer learning. 

VGG-16 is used to extract features from the preprocessed data 
for healthy and infected maize crop leaves. It then combines the 
spatial features for the ensemble feature set of GNB. To analyze 
the performance of new features, we adopted ML models. The 
images considered in the study include 4225 images of healthy 
and infected maize crops. Compared to spatial features used 
for infected leaf detection, features obtained using the VGG-16 
greatly enhanced the performance of ML models. Further verifi-
cation is carried out using a 10-fold cross-validation. An analysis 
of the prior work reveals that the proposed approach achieves 
an accuracy of 99.85%. Computational complexity analysis indi-
cates that the proposed approach is accurate, as well as robust. 

TABLE 5    |    Performance analysis using the proposed transfer features.

Model Accuracy Class Precision Recall F1 score

KNC 0.9900 Healthy 0.98 0.99 0.99

Infected 0.99 0.98 0.98

Average 0.99 0.99 0.99

GNB 0.9985 Healthy 0.99 1.0 0.99

Infected 1.0 0.99 0.99

Average 0.99 0.99 0.99

LR 0.9900 Healthy 0.99 0.97 0.98

Infected 0.98 0.99 0.99

Average 0.99 0.99 0.99

Rf 0.9800 Healthy 0.97 0.98 0.97

Infected 0.97 0.97 0.96

Average 0.98 0.98 0.98

FIGURE 5    |    The confusion matrix for the detection of healthy and infected maize crops using the proposed approach.
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In the future, we intend to develop a graphical framework that 
enables farmers to detect healthy and infected maize crops for 
precision agriculture.
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