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Abstract 

Thyroid illness encompasses a range of disorders affecting the thyroid gland, leading to either hyperthyroidism 
or hypothyroidism, which can significantly impact metabolism and overall health. Hypothyroidism can cause a slow-
down in bodily processes, leading to symptoms such as fatigue, weight gain, depression, and cold sensitivity. Hyper-
thyroidism can lead to increased metabolism, causing symptoms like rapid weight loss, anxiety, irritability, and heart 
palpitations. Prompt diagnosis and appropriate treatment are crucial in managing thyroid disorders and improving 
patients’ quality of life. Thyroid illness affects millions worldwide and can significantly impact their quality of life if left 
untreated. This research aims to propose an effective artificial intelligence-based approach for the early diagnosis 
of thyroid illness. An open-access thyroid disease dataset based on 3,772 male and female patient observations 
is used for this research experiment. This study uses the nominal continuous synthetic minority oversampling tech-
nique (SMOTE-NC) for data balancing and a fine-tuned light gradient booster machine (LGBM) technique to diagnose 
thyroid illness and handle class imbalance problems. The proposed SNL (SMOTE-NC-LGBM) approach outperformed 
the state-of-the-art approach with high-accuracy performance scores of 0.96. We have also applied advanced 
machine learning and deep learning methods for comparison to evaluate performance. Hyperparameter optimiza-
tions are also conducted to enhance thyroid diagnosis performance. In addition, we have applied the explainable 
Artificial Intelligence (XAI) mechanism based on Shapley Additive exPlanations (SHAP) to enhance the transparency 
and interpretability of the proposed method by analyzing the decision-making processes. The proposed research 
revolutionizes the diagnosis of thyroid disorders efficiently and helps specialties overcome thyroid disorders early.
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Introduction
Thyroid sickness or disorders refer to a group of medical 
conditions that affect the normal functioning of the thy-
roid gland, a small butterfly-shaped gland located in the 
neck [1]. The thyroid gland regulates various bodily func-
tions, including metabolism, energy production, growth, 
and development. Common thyroid disorders include 
hypothyroidism, where the thyroid gland produces insuf-
ficient amounts of thyroid hormones, and hyperthy-
roidism, characterized by an overproduction of thyroid 
hormones [2, 3]. These conditions can cause a wide range 
of symptoms, such as fatigue, weight changes, mood 
swings, and disrupted menstrual cycles. Various fac-
tors, including autoimmune diseases, iodine deficiency, 
genetic predispositions, and certain medications, can 
cause thyroid disorders. Diagnosis typically involves a 
combination of clinical examination, blood tests to meas-
ure thyroid hormone levels, and imaging tests [4]. Treat-
ment options vary depending on the specific disorder but 
can include hormone replacement therapy, medication to 
regulate hormone levels, or, in some cases, surgery.

Thyroid disorders, which include a range of conditions 
such as hypothyroidism, hyperthyroidism, and thyroid 
cancer, have been associated with mortality rates and 
deaths, although to varying degrees [5]. Mortality due 
to thyroid disorders is predominantly attributed to thy-
roid cancer, which accounts for most thyroid-related 
deaths [6]. Thyroid cancer mortality rates have shown a 
relatively stable trend in recent years, with advances in 
diagnostic techniques and treatment options contribut-
ing to improved outcomes. However, certain subtypes of 
thyroid cancer, particularly anaplastic thyroid carcinoma, 
continue to exhibit high mortality rates. Furthermore, 
while hypothyroidism and hyperthyroidism are gener-
ally manageable with appropriate medical interventions, 
untreated or poorly treated cases can lead to severe com-
plications, potentially increasing the risk of mortality [7]. 
Although the overall mortality burden of thyroid disor-
ders is comparatively lower than that of other significant 
diseases, ongoing research aims to refine diagnostic and 
therapeutic strategies [8], ultimately reducing mortality 
rates for individuals affected by thyroid disorders. Early 
detection, accurate diagnosis, and appropriate manage-
ment of thyroid disorders using an intelligent approach 
are essential to minimize symptoms, prevent complica-
tions, and maintain overall health and well-being.

Thyroid disorders pose a significant challenge for an 
accurate and timely diagnosis, often requiring extensive 
clinical evaluation and laboratory tests [9]. However, 
recent advances in artificial intelligence (AI) present 
promising opportunities to enhance the diagnostic pro-
cess [10]. AI systems can leverage machine learning algo-
rithms to analyze large amounts of patient data, including 

medical records [11], laboratory results [12], and imag-
ing studies [13], to identify patterns and correlations that 
may indicate medical disease symptoms. Similar thyroid 
dysfunction can be identified based on medical data fed 
to the machine learning model [14]. By training AI mod-
els in large datasets and incorporating diverse patient 
populations, AI algorithms can learn to recognize sub-
tle indicators of thyroid disorders and provide valuable 
information to healthcare professionals [15]. Integrating 
AI into the diagnosis of thyroid disorders can facilitate 
the diagnostic process, improve accuracy, and ultimately 
help early detection and appropriate treatment of the 
disorder.

Existing methods [5, 16–19] for diagnosing thyroid 
disorders often exhibit moderate performance scores 
and rely on traditional classification techniques built 
on imbalanced datasets. These approaches often fail 
to address data balance issues, leading to biased results 
and reduced diagnostic accuracy. Furthermore, the lack 
of explainable AI models in current diagnostic meth-
ods limits the interpretability and trustworthiness of the 
predictions. The advanced machine learning approach 
addresses these gaps by incorporating robust data bal-
ancing techniques and employing explainable AI models, 
enhancing the accuracy and transparency of thyroid dis-
order diagnoses.

In this study, we used an advanced machine learning 
approach to diagnose thyroid conditions. The dataset uti-
lized in this study contains thyroid disease records con-
sisting of 3,772 observations with 30 features for both 
male and female genders, which are categorized as ‘sick’ 
and ‘negative’ [20]. The dataset is imbalanced, which 
required the application of the SMOTE-NC method [21]. 
By generating synthetic samples, SMOTE-NC helped 
balance the class distribution, resulting in a more evenly 
distributed dataset for training machine learning mod-
els. For each instance in the minority class, SMOTE-NC 
selected its k nearest neighbor instances from the same 
class, based on a chosen distance metric. This technique 
proves particularly beneficial when dealing with datasets 
that contain continuous and nominal features, as SMOTE 
alone would not apply directly to the nominal features 
[22, 23]. The study introduced a unique combination of 
the SMOTE-NC method with a fine-tuned LGBM tech-
nique to diagnose thyroid illnesses and address class 
imbalance problems. The proposed LSN approach out-
performed the state-of-the-art methods, demonstrating 
high-accuracy performance scores.

The primary research contributions of the proposed 
study are as follows:

•	 We proposed an innovative SNL (SMOTE-NC-
LGBM) approach that combines SMOTE-NC with a 
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fine-tuned LGBM technique to diagnose thyroid ill-
ness and address the class imbalance problem, which 
has been lacking in previous studies. The results 
demonstrate that the proposed approach outper-
forms state-of-the-art methods, achieving high per-
formance in the diagnosis of thyroid diseases.

•	 We comprehensively evaluated the proposed 
approach against four advanced machine learning 
and two deep learning methods. In addition, we used 
a hyperparameter optimization approach to enhance 
the performance of the proposed approach for the 
diagnosis of thyroid disease.

•	 We have applied an eXplainable artificial intelli-
gence (XAI) mechanism based on the SHAP chart to 
enhance the transparency and interpretability of the 
proposed method. This approach allows us to analyze 
the decision-making processes for diagnosing thyroid 
illness, providing a better understanding of how the 
model reaches its decision.

The rest of the study is organized as follows. “Litera-
ture analysis”  section reviews the literature analysis for 
the detection of thyroid disorders. “Proposed methodol-
ogy” section presents a stepwise analysis of the proposed 
methodology. The results of the proposed approach are 
shown in “Results and discussions” section. Finally, “Con-
clusions and future work”  section concludes the study 
and highlights the main findings and future work.

Literature analysis
Thyroid disease is a prevalent health problem that affects 
a large population worldwide. Over the years, there has 
been growing interest in using machine learning tech-
niques to aid in the early diagnosis of [16]. A comprehen-
sive literature analysis examines the existing research on 
machine learning applications [5]. This analysis also high-
lights the challenges and limitations posed during thyroid 
diagnosis in previous studies. In [24], the study aimed to 
use machine learning to extract radiomic characteristics 
from two-dimensional ultrasound (2D-US) and contrast-
enhanced ultrasound (CEUS) images for the classification 
and prediction of benign and malignant thyroid nodules. 
Conducted retrospectively, the research included 313 
thyroid nodules (203 malignant and 110 benign) with 
pathological diagnoses. The diagnostic performance of 
both junior and senior radiologists was evaluated, with 
Area Under the Curve (AUC) scores of 0.755, 0.750, and 
0.784 for US, CEUS, and combined US and CEUS assess-
ments by junior radiologists, respectively. Senior radi-
ologists achieved AUCs of 0.800, 0.873, and 0.890. The 
Random Forest (RF) classifier outperformed other classi-
fiers, achieving an AUC of 1 for the training cohort and 
0.94 (95% confidence interval 0.88–1) for the test cohort. 

This research underscores the potential of combining 
machine learning with radiomics features from US and 
CEUS images to enhance the accuracy of thyroid nodule 
classification.

The research article [17] focuses on the application of 
various machine learning algorithms for the prediction of 
hypothyroidism and hyperthyroidism. To conduct their 
study, the authors utilize three datasets: hypothyroid, 
hyperthyroid, and sick, which collectively contain 3221 
entries. The research aims to identify crucial features that 
can improve the precision of detecting thyroid diseases. 
To achieve their goals, the paper undergoes pre-process-
ing and feature selection steps and then applies modified 
and original data to multiple classification models for 
thyroid prediction. Notably, the results demonstrate that 
Random Forest (RF) outperforms other models across all 
sectors of the dataset, while Naive Bayes performs poorly. 
The researchers used the RF feature importance method 
to achieve a remarkable precision of 91. 42%. However, 
diagnosis performance scores are relatively low, indicat-
ing a need for further improvement in this area.

In [25], the study evaluated the efficacy of two distinct 
classifier models in detecting thyroid issues. A dataset 
from the UCI repository is used to train and evaluate 
their models. The study mainly focused on examining 
the accuracy and precision of the Convolutional Neural 
Network (CNN) and Support Vector Machine (SVM) 
algorithms to distinguish between hypothyroidism and 
hyperthyroidism. The outcomes indicate that the CNN 
classifier performs better than the SVM classifier, achiev-
ing an accuracy of 89% and a precision of 87%. However, 
it is important to highlight that this study considers the 
overall performance scores of both classifiers.

Chaganti et  al., [18] focused on detecting thyroid dis-
ease using a machine learning approach, including SVM, 
the K-Nearest-Neighbors Algorithm (KNN), Decision 
Tree, Naive Bayes, and Random Forest. The study was 
based on collected samples of thyroid datasets from 
GitHub repositories. The results indicated that SVM, 
KNN, Decision Tree, and Naive Bayes achieved high 
accuracy levels, up to 90%. However, the existing Random 
Forest algorithm only managed an accuracy of approxi-
mately 70%. To improve accuracy, the authors introduced 
Principal Component Analysis (PCA), a dimensionality 
reduction technique that significantly improved accuracy 
to around 90%. The study also noted that classical feature 
engineering approaches still yielded relatively low-per-
formance scores.

Kumar et  al., [26] focused on their study on predict-
ing the early stages of thyroid development, specifi-
cally emphasizing common types of hypothyroidism. To 
accomplish this objective, the study incorporates feature 
selection strategies and various categorization methods. 
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The data set used in the study is obtained from the UCI 
data repository, which includes 7,200 different categories 
of multivariate data, and each record consists of 25 dis-
tinct characteristics. Disease identification is performed 
using a deep convolutional neural network (DeepCNN), 
while the Gray Wolf Optimizer (GWO) is employed for 
model training, as both have demonstrated a close asso-
ciation leading to enhanced accuracy. Through dataset 
refinement, the proposed model achieves an impressive 
95% accuracy and 92% specificity in classifying thyroid 
diseases.

In [27], Nayak et  al. introduced a unique multi-
instance-based learning technique for the cytopathologi-
cal diagnosis of thyroid conditions. The technique utilizes 
Multi-Scale Feature Fusion (MSF) and Convolutional 
Neural Networks (CNN) to process Whole Slide Images 
(WSIs) containing multiple occurrences per section. The 
architecture is designed to identify significant sections 
within the images automatically. The approach achieves 
improved classification results by incorporating a fea-
ture-fusion architecture that combines minimal features 
through an instance-level awareness model. The pro-
posed model undergoes extensive training and validation 
using clinical data, demonstrating an impressive accuracy 
of 93.2%, outperforming all existing methods. Moreover, 
the model’s superiority becomes evident when compared 
to a modern deep multi-instance technique applied to a 
publicly available histopathology dataset.

In [25], the study investigated the effectiveness of 
Support Vector Machine (SVM) classifiers and Logis-
tic Regression models in predicting and classifying thy-
roid disease. They argue that SVM classifiers outperform 
logistic regression models in terms of accuracy and pre-
cision during performance evaluation. To test their pro-
posed prediction model, the authors used an original 
dataset obtained from Sawai Man Singh Hospital (SMS) 
in India. The experimental findings indicate that the 
SVM classifier achieved a precision of 84% and an overall 
accuracy of 86%, showing performance scores lower than 
the baseline.

Alyas et al. [28] investigated the use of various machine 
learning algorithms for the classification of thyroid dis-
eases. The study performed a comparative analysis of the 
performance of the decision tree, random forest algo-
rithm, KNN, and artificial neural networks on a dataset 
obtained from the UCI thyroid disease repository. Fur-
thermore, they perform the classification on both sam-
pled and unsampled datasets to enable a comprehensive 
comparison. As a result of their analysis, the random 
forest algorithm achieved the highest accuracy, scoring 
94.8%, with a specificity of 91%.

In [19], the study investigated the application of 
machine learning algorithms to assess the risk of thyroid 

disease. For this purpose, the authors utilized the Sick-
euthyroid dataset [29]. Since the dataset contains 
imbalanced target variable classes, relying solely on the 
accuracy score might not accurately reflect the predic-
tion performance. To mitigate this issue, the evaluation 
metric considers both accuracy and recall ratings. Addi-
tionally, the F1 score, which offers a balanced measure of 
precision and recall for uneven class distributions, serves 
as a crucial performance metric for the machine learning 
algorithms employed in the study. The findings suggest 
that the ANN Classifier achieved the highest perfor-
mance, surpassing the other nine studied algorithms in 
accuracy when predicting the risk of thyroid disease with 
an F1-score of 95%.

In [30], Pal et  al., dedicated their efforts to designing 
an approach for the detection of thyroid disease using 
machine learning algorithms, including KNN, decision 
tree (DT), and multilayer perceptron (MLP). The authors 
obtained a thyroid disease dataset from the UCI reposi-
tory. To evaluate the models’ performance, accuracy and 
area under the curve were used as metrics. The results of 
the comparative analysis revealed that the multilayer per-
ceptron (MLP) outperformed the other models in accu-
rately classifying thyroid disease, achieving an impressive 
accuracy of 95.73% and an Area Under the Curve (AUC) 
value of 94.23%. The study involved a substantial dataset 
of 3,163 cases with 24 thyroid characteristics. An analy-
sis of existing works on the diagnosis of thyroid illness is 
given in Table 1.

Proposed methodology
The proposed research methodology is illustrated step-
wise in Fig. 1. To begin the experiments, we utilized an 
open-access thyroid disease dataset consisting of 3,772 
observations with 30 features. Upon analyzing the data-
set, we identified an imbalance issue. First, we split the 
dataset into training and testing sets, using 90% of the 
data for training purposes. The training data was then 
input into SMOTE-NC for data balancing. The result-
ing balanced dataset was used to train various machine 
learning and deep learning models with hyperparameter 
tuning. Each model’s performance was evaluated using 
unseen test data, which accounted for 10% of the origi-
nal dataset. The best-performing AI model was selected 
for diagnosing thyroid illness. Finally, we applied the XAI 
mechanism to analyze the decision-making processes of 
the chosen model, providing a better understanding of 
how the model reaches its conclusions.

Thyroid sickness data
This study used an open-access dataset on thyroid dis-
ease [20] acquired from a famous Kaggle repository. The 
downloaded data set contains thyroid disease records 
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collected and supplied by the Garavan Institute and J. 
Ross Quinlan of the New South Wales Institute, Sydney, 
Australia, in 1987. The dataset consists of 3,772 observa-
tions with 30 features. The target thyroid class is binary, 
categorized as ’sick’ and ’negative.’ The observations in 
the dataset cover both male and female genders. We also 
analyzed the correlation of dataset features, as shown in 
Fig. 2. The analysis demonstrates that all the features of 

the data set exhibit strong correlations among them to 
diagnose thyroid disease.

Proposed SNL approach
In this section, we analyze the proposed unique SNL 
research approach. Initially, we observed that the target 
class of the dataset is unbalanced, as illustrated in Fig. 3a. 
The analysis reveals that the ‘sick’ class contains a low 

Table 1  The literature summary analysis for diagnosis of thyroid illness

Ref. Year Dataset Technique Preprocessing Validation Performance 
accuracy

[17] 2023 Three datasets with 3221 patients RF Yes train-test 0.91

[25] 2023 UCI Thyroid Disease data CNN No train-test 0.89

[18] 2023 Thyroid dataset from GitHub repository. SVM Yes cross validation 0.90

[26] 2023 UCI thyroid illness data with 7200 patients CNN Yes cross validation 0.95

[27] 2023 Histopathology dataset CNN Yes train-test 0.93

[25] 2023 Thyroid data obtained from Sawai Man Singh 
(SMS) hospital in India.

SVM No train-test 0.86

[28] 2022 UCI thyroid illness data with 7200 patients RF Yes train-test 0.84

[19] 2022 Sick-euthyroid dataset ANN Yes cross validation 0.95

[30] 2022 UCI dataset consisting of 3163 patients MP No train-test 0.95

Fig. 1  The proposed methodology for the diagnosis of thyroid illness
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number of samples, which consequently impacts the per-
formance of thyroid diagnosis scores.

For data balancing, we applied the Synthetic minority 
oversampling TEchnique nominal continuous(SMOTE-
NC) method, and the results of data balancing are 
shown in Fig. 3b. SMOTE-NC is an advanced variant of 

the SMOTE algorithm designed to address class imbal-
ance in datasets containing both categorical (nominal) 
and continuous features. SMOTE-NC effectively gener-
ates realistic synthetic data, improving the performance 
of classifiers on imbalanced datasets with mixed feature 
types [21]. The use of the SMOTE-NC method allowed 

Fig. 2  The correlation analysis of thyroid disease-related features

Fig. 3  The distribution analysis of target label for thyroid illness diagnosis
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the applied Light Gradient Boosting Machine (LGBM) 
technique to achieve high-performance scores for thy-
roid diagnosis, as described in “Performance results 
with machine learning” section.

SMOTE-NC is chosen to balance the dataset after 
thoroughly evaluating various techniques due to its 
superior performance in handling numerical and cat-
egorical data [21]. Compared to other methods such as 
random under-sampling, random over-sampling, and 
simple SMOTE, SMOTE-NC effectively preserves the 
underlying data structure while generating synthetic 
samples [31], thus enhancing the classifier’s ability to 
generalize from imbalanced data. Its widespread appli-
cation and validation in the literature further reinforce 
its reliability. Consequently, SMOTE-NC is a robust 
and versatile technique for addressing class imbalance 
issues in datasets with mixed feature types.

SMOTE‑NC mathematical mechanism
Let N be the number of minority samples, and Nnew be 
the desired number of synthetic samples to be gener-
ated. You can set Nnew based on the desired balance 
level. For example, suppose that you want the minority 
class to be represented at a percentage p of the major-
ity class after over-sampling. In that case, you can set 
Nnew = p× (number of majority samples).

To generate synthetic samples using SMOTE-NC: 

1.	 Randomly select a minority sample xmin from the 
dataset.

2.	 For each selected minority sample xmin , identify its 
k nearest neighbors (k-NN) from both the minority 
and majority classes. The k-NN can be determined 
using a distance metric such as the Euclidean dis-
tance.

3.	 For each of the k-NN, calculate the difference vector 
diff  between the feature values of the current neigh-
bor and the selected minority sample xmin.

4.	 Generate synthetic samples xsyn for each k-NN as fol-
lows:

•	 For each feature j:

–	 If the feature is nominal: 

*	 Randomly choose one of the nominal val-
ues from the current neighbor and the 
selected minority sample xmin.

*	 Assign the chosen nominal value to the 
synthetic sample xsyn for the feature j.

–	 If the feature is continuous: 

*	 Calculate the difference ratio rat for the cur-
rent neighbor: rat = random_number()    (A 
random number between 0 and 1)

*	 Calculate the feature value for the syn-
thetic sample xsyn for feature j: 

5.	 Add the generated synthetic samples to the minority 
class, thus increasing its size.

Applied artificial intelligence methods
Applied artificial intelligence (AI) methods have emerged 
as promising tools for diagnosing thyroid diseases [32, 
33], revolutionizing the field of medical diagnostics. Thy-
roid disorders are often challenging to diagnose accu-
rately due to the subtle and diverse nature of symptoms. 
AI-powered diagnostic systems can detect patterns and 
associations that might escape the human eye [34–38], 
enabling early and precise identification of thyroid condi-
tions such as hypothyroidism, hyperthyroidism, and thy-
roid nodules.

Logistic regression
Logistic Regression (LR) is a widely used method for 
diagnosing thyroid illness due to its effectiveness in 
binary classification tasks [39]. The LR algorithm is a 
type of supervised learning technique that aims to pre-
dict the probability of an event occurring; in this case, it 
is used to determine the presence or absence of thyroid 
disease. The algorithm operates by modeling the relation-
ship between a set of input features and the binary output 
variable representing the diagnosis. The working princi-
ple of LR involves transforming the linear combination of 
input features using the logistic function, also known as 
the sigmoid function. The LR equation for the diagnosis 
of thyroid illness is given by:

Where:

Linear support vector machines
The Linear Support Vector Machines (LSVM) method 
can be used for the diagnosis of thyroid illness [40]. In the 
binary classification setting, the LSVM algorithm aims 

xsyn[j] = xmin[j] + rat× diff[j]

(1)P(y = 1|x) =
1

1+ e−(β0+β1x1+β2x2+...+βnxn)

P(y = 1|x) is the probability of thyroid illness diagnosis

x is the input feature vector

β0,β1, . . . ,βn are the coefficients to be learned

x1, x2, . . . , xn are the input features
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to find the optimal hyperplane that separates the two 
classes in feature space.

Given a training dataset D = {(x1, y1), (x2, y2), . . . , (xn , yn)} , 
where xi ∈ R

d represents the feature vector of the i-th 
patient and yi ∈ {−1, 1} is the corresponding class label 
indicating whether the patient is healthy ( yi = −1 ) or has 
a thyroid illness ( yi = 1).

The LSVM seeks to find the optimal hyperplane repre-
sented by the equation:

where w ∈ R
d is the weight vector, and b ∈ R is the bias 

term.
The decision function of the LSVM is defined as:

where sign(·) is the sign function that returns +1 if the 
argument is positive, −1 if the argument is negative, and 
0 if the argument is zero.

We want to maximize the margin between the two 
classes to find the optimal hyperplane. The margin is the 
perpendicular distance from any training sample to the 
hyperplane. Mathematically, the margin is given by:

Subject to the constraint that for all i:

The optimization problem can be formulated as:

Once the optimal hyperplane is obtained, we can use 
the decision function f (x) to predict the class of a new 
patient based on their feature vector x.

Random forest
Random Forest (RF) is an ensemble learning method that 
combines multiple decision trees to make predictions 
[18, 41]. For the diagnosis of thyroid illness, we can rep-
resent the Random Forest model as follows:

Let X be the feature matrix representing the input data 
with n samples and m features. Each sample is denoted 
by xi for i = 1, . . . , n , and the corresponding target labels 
are represented by yi.

RF algorithm generates B decision trees T1,T2, . . . ,TB 
by using bootstrapped samples from the original data 
with replacement. Each tree is trained on a random 

(2)w
T · x + b = 0

(3)f (x) = sign(wT · x + b)

(4)margin =
1

�w�

(5)yi(w
T · xi + b) ≥ 1

(6)minimize
1

2
‖w‖2

(7)subject to yi(w
T · xi + b) ≥ 1 for all i

subset of the features. Let Tb represent the b-th tree, 
where b = 1, . . . ,B.

The prediction of the RF model for a new input sample 
xnew is obtained by aggregating the predictions of indi-
vidual decision trees. For classification tasks, this aggre-
gation is typically done by majority voting. Let ynew be 
the predicted class for the new sample xnew.

The predicted class ynew is given by:

where mode represents the majority voting function.
For regression tasks, the predictions of individual trees 

are averaged to obtain the final prediction. Let fnew be 
the predicted value for the new sample xnew.

The predicted value fnew is given by:

Light gradient boosting machine
Light Gradient Boosting Machine (LGBM) is a popular 
gradient boosting framework used for both classifica-
tion and regression tasks [42]. It is an ensemble learning 
method that combines the predictions of several weak 
learners (typically decision trees) to build a more accu-
rate and robust model. The general idea of LGBM can be 
summarized as follows.

Let {(xi, yi)}ni=1 be the training dataset, where xi repre-
sents the features of the i-th instance, and yi is the cor-
responding label.

Prediction of the m-th Tree: The prediction of the m
-th tree is given by:

where fm(x) is the prediction of the m-th tree, fm−1(x) is 
the prediction of the (m− 1)-th ensemble, and Tm(x;�m) 
is the prediction of the m-th tree with its parameters �m.

Objective Function (Loss Function): The objective 
function is defined as:

Where L(y, ŷ) is the loss function that measures the dis-
crepancy between the predicted value ŷ and the true label 
y , and �(fm) is the regularization term for the m-th tree.

Training Process: The LGBM training process involves 
finding the parameters �m for each tree that minimizes 
the objective function L.

(8)ynew = mode(T1(xnew),T2(xnew), . . . ,TB(xnew)),

(9)fnew =
1

B

B

b=1

Tb(xnew).

ŷ(m) = fm(x) = fm−1(x)+ Tm(x;�m)

L =

n∑

i=1

L(yi, ŷi)+

M∑

m=1

�(fm)
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Gated recurrent unit
The Gated Recurrent Unit (GRU) is a type of recurrent 
neural network (RNN) that can be used to diagnose 
thyroid disease [43]. It has two main gating mecha-
nisms, the reset gate and the update gate.

The update gate zt determines how much of the previ-
ous hidden state ht−1 should be retained, and the reset 
gate rt decides how much of the previous hidden state 
should be ignored. The candidate hidden state h̃t is 
computed as follows:

Where:

•	 xt is the input at time step t,
•	 ht−1 is the hidden state at the previous time step,
•	 W and U are weight matrices,
•	 ⊙ represents element-wise multiplication.

The update gate zt and the reset gate rt are computed 
as follows:

Where:

•	 σ is the sigmoid activation function,
•	 Wz , Wr , Uz , and Ur are weight matrices for the update 

and reset gates.

The final hidden state ht is computed by combining 
the previous hidden state with the candidate hidden 
state:

The output of the GRU at time step t can be used to 
diagnose thyroid illness based on the specific task and 
dataset. Table 2 shows the layer-wise architecture of the 
GRU model.

(10)h̃t = tanh(W · (rt ⊙ ht−1)+U · xt)

(11)zt = σ(Wz · xt + Uz · ht−1)

(12)rt = σ(Wr · xt + Ur · ht−1)

(13)ht = (1− zt)⊙ ht−1 + zt ⊙ h̃t

Long short‑term memory
Long short-term memory (LSTM) [44] is a type of recur-
rent neural network (RNN) that is well suited for han-
dling sequential data such as time series, making it a 
useful approach to diagnosing diseases based on sequen-
tial medical data. The LSTM architecture consists of 
several equations that govern the network’s information 
flow. These equations involve various matrices and vec-
tors representing input, output, cell states, and activation 
functions. In this example, we have provided a simpli-
fied version of the LSTM equations for illustration. The 
following are the mathematical equations of the LSTM 
method for diagnosing thyroid disease.

The LSTM cell has three main gates (input, forget, and 
output gates) that control the flow of information.

The final output is obtained by passing the last hidden 
state hT through a fully connected layer:

Table 3 shows the layer-wise architecture of the LSTM 
model.

Explainable artificial intelligence
In this study, the main objective is to diagnose thyroid 
disease using XAI with a SHAP chart [45, 46]. The XAI 
method provides insights into how the AI model makes 
predictions, allowing us to interpret the results more 
effectively. The SHAP chart is a method used to interpret 

(14)it = σ(Wxixt +Whiht−1 + bi)

(15)ft = σ(Wxf xt +Whf ht−1 + bf )

(16)ot = σ(Wxoxt +Whoht−1 + bo)

(17)C ′
t = tanh(Wxcxt +Whcht−1 + bc)

(18)Ct = ft ⊙ Ct−1 + it ⊙ C ′
t

(19)ht = ot ⊙ tanh(Ct)

(20)y = σ(WhyhT + by)

Table 2  GRU model layer architecture

Layer Shape Param #

gru_2 (GRU) (None, 64) 12864

dense_4 (Dense) (None, 32) 2080

dropout_2 (Dropout) (None, 32) 0

dense_5 (Dense) (None, 1) 33

Total params 14,977

Table 3  LSTM model layer architecture

Layer Shape Param #

lstm (LSTM) (None, 64) 16896

dense_6 (Dense) (None, 32) 2080

dropout_2 (Dropout) (None, 32) 0

dense_5 (Dense) (None, 1) 33

Total params 14,977
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the predictions made by machine learning models. It 
helps us to understand the contribution of each feature to 
the final prediction.

For the proposed Thyroid Illness diagnosis model, we 
use a machine learning model f that takes a set of features 
x = (x1, x2, . . . , xn) as input and outputs a prediction f(x). 
The SHAP value for each feature xi is defined as follows:

Where

•	 N is the set of all features in the model 
( N = {x1, x2, . . . , xn}).

•	 S is a subset of N excluding the feature xi.
•	 xS is the input with features from the subset S fixed at 

a reference value.
•	 f (xS ∪ {xi}) is the model’s prediction when including 

the feature xi with input xS.
•	 f (xS) is the prediction of the model with input xS.

The SHAP values represent the average contribution of 
each feature to the predictions in all possible combina-
tions of features.

For the specific cases of diagnosis of thyroid disease, we 
have a set of characteristics related to patient health and 
test results. Let x = (x1, x2, . . . , xn) represent the feature 
vector for a patient.

The machine learning model f takes x as input and pre-
dicts the patient’s probability of thyroid disease, denoted 
P(Thyroid Illness|x).

The SHAP chart allows us to visualize how each feature 
contributes to the final prediction probability. Positive 
SHAP values indicate that the feature positively influ-
ences the prediction, while negative values indicate a 
negative influence.

This study used the SHAP chart as an Explainable AI 
method to diagnose Thyroid Illness. The SHAP values 
provide valuable insights into the contribution of each 
feature to the model’s predictions, enhancing the inter-
pretability of the AI system.

Results and discussions
In this section, we present the results obtained from this 
study on the use of AI methods for thyroid diagnosis. The 
study aimed to develop and evaluate an AI-based model 
that assists in accurately and efficiently diagnosing thy-
roid disorders. The data set used for AI model training 
and performance evaluations contained numerous medi-
cal records related to thyroid, including patient demo-
graphics, symptoms, and laboratory test results.

(21)
SHAP(xi) =

∑

S⊆N\{i}

|S|! · (|N | − |S| − 1)!

|N |!

[f (xS ∪ {xi})− f (xS)]

Experimental setup
The Python 3.0 programming language was used to con-
duct the experiments. The study’s experiments were per-
formed in an environment with a graphics processing 
unit (GPU) back-end, 16GB of RAM, and 90GB of disk 
space. The machine learning libraries employed in this 
study include Scikit-learn, Keras, TensorFlow, NumPy, 
Seaborn, and Matplotlib. We used f1 score, recall, pre-
cision, and accuracy for performance evaluations as 
metrics.

Hyperparameter tuning
In this study, we applied the hyperparameter tuning 
mechanism to enhance the performance of the applied 
deep learning and machine learning methods for thy-
roid diagnosis. The hyperparameter tuning mechanism is 
based on a recursive training and testing process to find 
the optimal hyperparameters. The k-fold cross-valuation 
approach is also used for the selection of the optimal per-
formance parameters. We selected a systematic approach 
to carefully explore and control the hyperparameters, 
such as learning rate, batch size, and number of hidden 
layers, before training the model. The rationale for choos-
ing systematic parameter tuning over other approaches 
is that this approach has low computational complexity. 
While other approaches, such as grid search, random 
search, or Bayesian optimization might provide slightly 
better parameter-fit for models, they cost in terms of 
computational resources. The objective of this study is to 
set a baseline performance for thyroid detection, system-
atic tuning is a more practical and feasible approach. In 
addition, due to the complex architecture of the proposed 
approach, selecting grid search or Bayesian optimization 
requires sophisticated parameter optimization. On the 
other hand, systemic hyperparameter tuning seems a 
more realistic approach. The best-fit hyperparameters for 
this study are analyzed in Table 4.

Performance results with machine learning
In this section, the performance of applied machine 
learning approaches for diagnosing thyroid disease is 
analyzed. The precision of performance and the results 
of the classification report for each machine learning 
method are outlined in Table  5. The analysis demon-
strates that the linear models LR and LSVM achieved 
poor performance scores, leading to the conclusion that 
the features of the dataset are not highly linearly sepa-
rable. In contrast, the tree-based models RF and LGBM 
exhibited strong performance in this analysis. The pro-
posed LGBM method, specifically, achieved the highest 
accuracy score of 0.96 for diagnosing thyroid disease.
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Performance results with deep learning
For a detailed comparison, we utilized an advanced 
deep learning approach and presented the performance 
results in this section. Performance evaluation of the 
GRU and LSTM methods applied during training is 
shown in Fig. 4.

Each deep learning model was run for 20 epochs, and 
training and validation outcomes were assessed. The 

analysis reveals that, in the initial two epochs, both mod-
els exhibited high loss and low accuracy scores, attrib-
utable to the random weights assigned by each neural 
network model. Subsequently, each learning model 
updated the weights, improving performance scores and 
decreasing loss scores. The analysis concludes that both 
models achieved high accuracy scores of over 0.90 for 
both training and validation.

Performance metric scores for unseen test data from 
applied deep learning models are analyzed in Table  6. 
Performance analysis shows that the GRU method 
achieved an acceptable performance score of 0.89 but 
did not achieve the highest score. However, the applied 
LSTM achieved good accuracy scores of 0.93 and preci-
sion scores of 0.94. This analysis concludes that the deep 
learning models achieved acceptable scores, which could 
be further improved by training on a larger amount of 
data. Figure  5 visualizes the performance of various 
machine deep learning models for thyroid detection indi-
cating the superior performance of the LGBM model 
with a 0.96 accuracy score.

In this analysis, the applied GRU and LSTM models 
underperform compared to LightGBM because they are 
designed for large datasets with complex temporal pat-
terns. With only 3,772 observations, the models might not 

Table 4  Hyperparameter tuning analysis

Technique Hyperparameter description

LR random_state=0, max_iter=300, multi_class=‘auto’, C=1.0

LSVM random_state=0, max_iter=500, multi_class=‘auto’, C=1.0

RF n_estimators=200, max_depth=200, random_state=0

LGBM n_estimators=300, boosting_type=‘gbdt’, num_leaves=31, importance_type=‘split’

GRU​ loss = ‘binary_crossentropy’, activation=‘sigmoid’, metrics=‘accuracy’, optimizer = ‘adam’, epochs=20

LSTM loss = ‘binary_crossentropy’, activation=‘sigmoid’, metrics=‘accuracy’, optimizer = ‘adam’, epochs=20

Table 5  Performance analysis of applied machine learning 
methods for unseen test data

Technique Accuracy Target class Precision Recall F1

LR 0.80 Negative 0.75 0.91 0.82

Sick 0.89 0.70 0.78

Average 0.82 0.80 0.80

LSVM 0.80 Negative 0.75 0.91 0.82

Sick 0.89 0.70 0.78

Average 0.82 0.80 0.80

RF 0.93 Negative 0.88 1.00 0.94

Sick 1.00 0.87 0.93

Average 0.94 0.93 0.93

LGBM 0.96 Negative 0.92 1.00 0.96
Sick 1.00 0.91 0.95
Average 0.96 0.96 0.96

Fig. 4  The time series-based performance analysis of deep learning approaches during the training process
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learn complex patterns and interdependencies and mod-
els might not be trained well. The LSTM and GRU have 
many parameters to optimize, which can be excessive for 
smaller datasets. LightGBM, being a tree-based model, 
typically requires fewer data to train effectively and can 
capture simpler patterns with a lower risk of overfitting. 
The LightGBM relies on structured feature input and can 
perform well with minimal preprocessing. Deep learning 
models often benefit from high-dimensional data with 
temporal dependencies. These factors can contribute 
to LightGBM’s advantage in handling moderately sized, 
structured datasets over GRU and LSTM models.

Confusion matrix and histogram results analysis
The confusion matrix analysis is conducted to ana-
lyze the strengths and weaknesses of applied machine 
learning and deep learning approaches during diagno-
sis. Performance analysis using the confusion matrix is 
illustrated in Fig. 6. The analysis shows that a high error 
rate is observed, resulting from incorrect predictions, 

in the LR and LSVC methods. However, other methods 
achieved acceptable performance scores. The proposed 
LGBM demonstrated a minimum misclassification rate 
for unseen testing data, thereby validating the high per-
formance of the proposed approach for thyroid diagnosis.

The comparisons of the accuracy performance of the 
applied deep learning and machine learning methods, 
based on histograms, are illustrated in Fig. 5. The analy-
sis reveals that the linear models LR and LSVM achieved 
a lower performance compared to others. The proposed 
tree-based LGBM method achieved high-performance 
scores for the diagnosis of thyroid conditions. Figure  7 
shows the receiver operating characteristic curve (ROC) 
that outperforms the LGBM model. The analysis illus-
trated that the proposed model achieved high ROC per-
formance scores for the detection of thyroid syndrome.

Computational complexity analysis
In this section, we perform a computational complex-
ity performance analysis of applied machine learning 
and deep learning methods to diagnose thyroid prob-
lems. Runtime computation scores are evaluated in 
seconds for each model built on the dataset, as shown 
in Table 7. The analysis reveals that machine learning-
based LR and LSVM achieved low computational times; 
however, they also exhibited low-performance scores. 
Conversely, the deep learning methods demonstrated 
the highest computation scores. Consequently, in the 
comparative analysis, the LGBM method exhibited the 
best performance scores.

XAI results analysis
The results of the XAI analysis using the proposed 
method are illustrated in Fig. 8. This analysis determines 

Table 6  Performance analysis of applied deep learning methods 
for unseen test data

Technique Accuracy Target class Precision Recall F1

GRU​ 0.89 Negative 0.82 1.00 0.90

Sick 1.00 0.78 0.88

Average 0.91 0.89 0.89

LSTM 0.93 Negative 0.95 0.91 0.93

Sick 0.92 0.96 0.94

Average 0.94 0.93 0.93

LGBM 0.96 Negative 0.92 1.00 0.96
Sick 1.00 0.91 0.95
Average 0.96 0.96 0.96

Fig. 5  Performance analysis of applied machine learning and deep learning
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the contribution of each dataset feature to the decisions 
made by the proposed method during thyroid diagnosis. 
The importance scores of dataset features are arranged in 
descending order in the SHAP chart analysis. This analy-
sis reveals that features T3, referral_source, FTI, TT4, 
age, T4U, TSH, and on_thyroxine play a significant role 
in diagnosing thyroid disease using the proposed model.

The SHAP analysis identified T3, TT4, TSH, and FTI 
as key features for diagnosing thyroid disease, enhancing 
the model’s predictive accuracy. T3 (triiodothyronine) is 
active, while TT4 (total thyroxine) shows total hormone 
production by the thyroid. Changes in T3 and TT4 levels 
signal hyperthyroid and hypothyroid conditions, affect-
ing metabolic rates, heart rate, body temperature, and 

Fig. 6  The confusion matrix performance analysis of applied methods

Fig. 7  The ROC curve analysis of outperformed LGBM model
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energy levels. T3 is particularly valuable because it is the 
active form of thyroid hormone, directly affecting cel-
lular metabolism and energy balance. Elevated T3 levels 
can signify hyperthyroidism, while decreased levels may 
indicate hypothyroidism, making it a critical marker in 
distinguishing between thyroid conditions. TT4, which 
encompasses both bound and unbound forms of thy-
roxine, provides a broader measure of thyroid output, 
helping to capture overall thyroid health and identify 
abnormalities. Combined with TSH (thyroid-stimulating 
hormone), which regulates thyroid function, and FTI 
(Free Thyroxine Index), these features together offer a 
comprehensive view of thyroid functionality. The model’s 
reliance on these features aligns well with clinical diag-
nostic practices, supporting the model’s interpretability 

Table 7  Computational complexity analysis of employed 
machine and deep learning approaches

Technique Runtime 
computation 
(seconds)

ML LR 0.713

SVM 0.307

RF 3.603

LGBM 1.060

DL GRU​ 43.17

LSTM 88.17

Fig. 8  The SHAP chart-based XAI analysis of the proposed method for diagnosis of the thyroid
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for practitioners and adding relevance to its predictions 
in a clinical setting.

Performance fairness analysis of proposed model
This section analyzes the performance fairness analysis of 
an innovative SNL-proposed machine learning approach. 
Performance scores for male and female patients are pre-
sented in Table  8. Next, we have divided the data into 
two age groups: young and old, and evaluated the per-
formance scores in Table  9. This analysis demonstrates 
that the proposed approach achieved high-performance 
scores in real-world scenarios.

Comparison with state‑of‑the‑art studies
We have compared the performance of the proposed 
research approach with current studies and evaluated the 
results as reported in Table  10. The analysis concludes 
that the proposed approach outperformed state-of-the-
art studies with high-performance scores for the diagno-
sis of thyroid disorders.

Study limitations
While this study provides valuable insights and dem-
onstrates high accuracy in diagnosing thyroid disease, 
several limitations should be acknowledged to contex-
tualize the results and identify areas for future improve-
ment. First, the dataset used in this study was collected 
in 1987, which may limit its applicability to current 
clinical settings, as it may not fully represent modern 
trends in thyroid disease or reflect advances in medical 
understanding. Additionally, the dataset lacks detailed 
demographic information, such as ethnicity and socio-
economic background, which could affect thyroid dis-
ease presentation and progression. This limitation may 
impact the model’s generalizability to diverse patient 
populations not represented in the dataset.

Another consideration is the absence of temporal 
data, as this study relies on static observations. Thyroid 

disease diagnosis and management often benefit from 
longitudinal data that captures changes in health indi-
cators over time. Future work incorporating time-series 
data could better support diagnostic decisions by allow-
ing the model to monitor disease progression across 
patient treatment timelines. Moreover, the model was 
evaluated using a single dataset without external valida-
tion of independent datasets. Such validation would be 
essential to verify the model’s robustness and adaptabil-
ity across different clinical settings, minimizing poten-
tial overfitting to the specific features of this dataset.

Finally, while SHAP-based explanations offer inter-
pretability, the complexity of these explanations may 
still pose challenges for clinical use [47], as physicians 
may find it time-consuming to review the contribu-
tions of individual features for each prediction. Future 
research could focus on developing streamlined inter-
pretability tools and user-friendly interfaces to facilitate 
robust and easier integration into clinical workflows 
[48]. Addressing these limitations in future studies will 
help improve the robustness, generalizability, and clini-
cal usability of the proposed model, making it better 
suited for real-world diagnostic needs and enhancing 
its potential impact on patient care.

Potential integration into clinical workflows
The proposed diagnostic model aims to serve as a deci-
sion support tool for healthcare providers in diagnos-
ing thyroid diseases, particularly in resource-limited or Table 8  Performance fairness analysis of the proposed model 

for male and female patients

Male patients
Target Precision Recall F1

Negative 1.00 0.99 0.99

Sick 0.88 0.93 0.90

Average 0.94 0.96 0.95
Female patients
Negative 1.00 1.00 1.00

Sick 0.94 0.89 0.92

Average 0.97 0.95 0.96

Table 9  Performance fairness analysis of the proposed model 
for young and adult age group patients

Young patients (age<=20)
Target Precision Recall F1

Negative 1.00 1.00 1.00

Sick 1.00 1.00 1.00

Average 1.00 1.00 1.00
Adult patients (age>20)
Negative 1.00 0.99 0.99

Sick 0.99 1.00 1.00

Average 0.99 0.99 0.99

Table 10  Performance comparison of the proposed method 
with state-of-the-art studies

Ref. Year Proposed method Performance 
accuracy

[25] 2023 Convolutional Neural Network 0.89

[18] 2023 Support Vector Machine 0.90

[28] 2022 Random forest 0.84

This Study 2024 Proposed SNL 0.96
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high-volume settings. Its application could involve inte-
gration with electronic health record (EHR) systems, 
where the model processes patient data and flags pos-
sible thyroid abnormalities. This allows physicians to 
review predictions alongside patient histories and labo-
ratory results. Integration could streamline preliminary 
diagnostic steps, help prioritize cases, and support early 
intervention strategies.

To ensure practical relevance, future work should 
include clinical validation trials in which the model’s 
outputs are evaluated against physician diagnoses in a 
real-world setting. By embedding the model as a com-
plementary tool in existing diagnostic workflows, we 
anticipate that it could expedite patient evaluations and 
help identify thyroid conditions early, particularly in 
asymptomatic cases where traditional screenings may 
be delayed. Physicians could also use this tool as part of 
a broader diagnostic framework, offering preliminary 
insights based on patient data, which are then further 
refined through clinical judgment and additional testing 
as needed. This collaborative approach between AI-based 
diagnostics and human expertise has the potential to 
enhance diagnostic accuracy and patient care quality in 
endocrinology clinics and primary care settings.

Conclusions and future work
This research proposes an effective artificial intelligence-
based approach for the early diagnosis of thyroid illness, 
leveraging an open-access thyroid disease dataset with 
3,772 patient observations. By uniquely combining the 
SMOTE-NC method with a fine-tuned LGBM technique, 
this study addresses class imbalance challenges and 
achieves a high diagnostic accuracy score of 0.96, out-
performing current state-of-the-art methods. We further 
evaluated model performance by comparing it with four 
advanced machine learning techniques and two deep 
learning models, optimizing hyperparameters to enhance 
diagnostic accuracy. To support interpretability, we uti-
lized the SHAP-based XAI mechanism, providing trans-
parency into the model’s decision-making process and 
facilitating clinician understanding of its predictions.

The potential applications of this model extend to clini-
cal settings as a decision-support tool, with future goals 
of integration into EHR systems. This integration could 
assist healthcare providers by offering preliminary diag-
nostic insights and flagging potential cases for further 
evaluation, especially in high-volume or resource-limited 
environments. To fully realize its clinical potential, future 
work will focus on conducting real-world clinical vali-
dation trials, assessing the model’s effectiveness in col-
laboration with physicians, and refining its utility within 
clinical workflows. Despite these promising outcomes, 

there are limitations that future research could address. 
The dataset’s size and diversity, while substantial, could 
be further expanded to improve the model’s robustness 
and generalizability across broader populations. Future 
studies may also explore incorporating additional bio-
markers and features related to thyroid disease, as well 
as advanced methods like transfer learning to boost diag-
nostic performance. These enhancements will not only 
strengthen model accuracy but also support its applica-
bility across diverse patient populations, ensuring greater 
reliability in clinical contexts. In addition, we plan to 
create a graphic user interface-based tool where medi-
cal specialists can input patient details, and the proposed 
framework will provide a real-time diagnosis of thyroid 
conditions in a clinical environment.
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