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Abstract 

Non-Insulin-Dependent Diabetes Mellitus (NIDDM) is a chronic health condition 
caused by high blood sugar levels, and if not treated early, it can lead to serious 
complications i.e. blindness. Human Activity Recognition (HAR) offers potential 
for early NIDDM diagnosis, emerging as a key application for HAR technology. This 
research introduces DiabSense, a state-of-the-art smartphone-dependent system 
for early staging of NIDDM. DiabSense incorporates HAR and Diabetic Retinopathy 
(DR) upon leveraging the power of two different Graph Neural Networks (GNN). HAR 
uses a comprehensive array of 23 human activities resembling Diabetes symptoms, 
and DR is a prevalent complication of NIDDM. Graph Attention Network (GAT) in HAR 
achieved 98.32% accuracy on sensor data, while Graph Convolutional Network (GCN) 
in the Aptos 2019 dataset scored 84.48%, surpassing other state-of-the-art models. 
The trained GCN analyzed retinal images of four experimental human subjects for DR 
report generation, and GAT generated their average duration of daily activities over 30 
days. The daily activities in non-diabetic periods of diabetic patients were measured 
and compared with the daily activities of the experimental subjects, which helped 
generate risk factors. Fusing risk factors with DR conditions enabled early diagnosis 
recommendations for the experimental subjects despite the absence of any appar-
ent symptoms. The comparison of DiabSense system outcome with clinical diagnosis 
reports in the experimental subjects was conducted using the A1C test. The test results 
confirmed the accurate assessment of early diagnosis requirements for experimental 
subjects by the system. Overall, DiabSense exhibits significant potential for ensuring 
early NIDDM treatment, improving millions of lives worldwide.
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Introduction
Diabetes is recognized as a rapidly expanding worldwide health crisis in the twen-
tyfirst century [1]. The number of people affected by this condition in 2021 had 
surpassed half a billion worldwide (10.5% of the global population). According to 
projections, this figure will increase to 12. 2% by 2045. Type 2 Diabetes/Non-Insulin-
Dependent Diabetes Mellitus (NIDDM) stands as the predominant form of Diabetes, 
constituting more than 90% of Diabetes cases globally. Another cause for concern is 
that around 45% of diabetic patients worldwide are currently living with undiagnosed 
Diabetes, predominantly NIDDM. Early diagnosis and treatment can significantly 
reduce or prevent the severity of the disease and its associated complications. How-
ever, one-third to one-half of individuals with type 2 Diabetes remain undiagnosed 
due to the absence of apparent symptoms in the early stages. The precise timing of 
type 2 Diabetes onset is often difficult to ascertain, resulting in a prolonged pre-diag-
nostic phase. If the diagnosis is significantly delayed, complications can arise, even-
tually leading to the detection of the condition [2, 3]. These statistics and medical 
concerns underscore the urgent need to recognize the early signs as well as improve 
the ability to diagnose people with Diabetes, many of whom are unaware they have 
the disease, and provide appropriate and timely care for all individuals before it gets 
too severe.

People with NIDDM are at a higher risk of experiencing various medical complica-
tions. Among these complications, including retinopathy, cardiovascular disease, neu-
ropathy, and nephropathy, retinopathy is the most common complication of diabetes [4, 
5]. Diabetic Retinopathy (DR) is an eye disorder that can lead to vision loss in persons 
with diabetes. The existence of DR suggests that the NIDDM has already affected the 
microcirculation, hence it can be regarded as a valid biomarker of the detrimental con-
sequences of NIDDM in a given individual.

Human Activity Recognition (HAR) is a system that utilizes sensor data to identify 
activities based on body motions. NIDDM has a negative correlation with physical activ-
ity. Sedentary behavior (such as lying down, standing up, sitting) and a lack of physi-
cal exercise are associated with higher health risks for NIDDM [6, 7]. The HAR system 
can detect various sedentary behaviors and physical activities of humans. Studies have 
shown that individuals who are more physically active have a significantly lower risk of 
NIDDM than those who are less active [6–9]. Therefore, the HAR system can be valu-
able for actively classifying human activities over a long period to generate risk factors of 
NIDDM.

This work aims to improve early diagnosis of NIDDM so that there is no longer a need 
for humans to depend on apparent medical symptoms. The main objective of DiabSense 
is to provide individuals with an understanding of their likelihood of having diabetes 
by tracking their daily activity patterns as well as grading retinal fundus images. Diab-
Sense notifies them about the severity of NIDDM using only their smartphone sensors. 
This way the system will encourage them to undergo clinical testing procedures based 
on their risk factors, reducing the reliance on costly routine medical checkups until the 
system signals an early diagnosis. Early diagnosis facilitated by the proposed system can 
help prevent or delay the onset of complications related to NIDDM. It is in fact, regular 
screening is key to preventing blindness caused by Diabetic Retinopathy (DR). Being the 
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sole system reliant on smartphones, it presents a unique and optimistic approach within 
the field of medical science.

In this work, a novel system “DiabSense” is presented for the early staging of NIDDM 
after being motivated by the correlation between daily activities and NIDDM, coupled 
with Diabetic Retinopathy (DR), the most prevalent complication of NIDDM. Activi-
ties that help identify symptoms related to NIDDM were recognized as useful data from 
smartphone sensor. The smartphone triaxial accelerometer sensor data were utilized 
to train a Graph Attention Network (GAT) for the Human Activity Recognition (HAR) 
task. Besides, Vision GNN (ViG), a Graph Convolutional Network (GCN) based model 
was trained on a benchmark retinal fundus dataset Aptos 2019 to grade DR [10]. Since 
the DR lesions are usually not quadrate but irregular-shaped, the conventional approach 
of using CNN-based architecture would not be ideal in this case. CNN treats images as 
grid structures, which limits their ability to handle complex and irregular shape lesions 
in fundus images alone. To overcome this limitation and explore a novel vision algo-
rithm, this work delved into the usage of GCN with the ViG algorithm for DR grading. 
The ensemble of GCN-based ViG and CNN-based EffNet takes into account both irreg-
ular and regular shapes of the objects from images which enhances the performance. For 
experimental purposes and initial validation, human experimental subjects (ES) were 
chosen to volunteer. Android smartphone device was used to gather sensor and retinal 
image data from the experimental subjects. Over thirty consecutive days, labelless sen-
sor data on the experimental subjects day-to-day activities were collected. The gathered 
sensor data and retinal images from the experimental subjects were then fed into the 
pre-trained GAT and ViG, respectively. Through predictions, the models were able to 
recognize daily activity patterns and grade their DR condition. By analyzing the pre-
dicted activity log, the average duration spent on each activity daily by the experimental 
subjects was calculated. Additionally, a comprehensive survey of activity patterns exhib-
ited by 97 diabetic patients before their diabetic period lifestyle was conducted. A com-
parison of the activity patterns of the experimental individuals and diabetes patients was 
used to determine the risk factor. The six basic physical characteristics-height, weight, 
blood pressure, age, gender, and evidence of diabetes in first-degree relatives as well as 
the exercise patterns are taken into consideration in order to assess this resemblance. 
The calculated Cosine similarity measures for four experimental subjects categorized 
them according to their risk factors of NIDDM. Furthermore, to validate the risk factor 
diagnosis, the experimental subjects underwent clinical testing using the A1C diagnostic 
process, which measures the level of A1C in the blood. The A1C levels of experimental 
subjects confirmed the generated risk factors by the system were valid. This clinical con-
firmation aligns with the conclusion reached through the initial assessment of this work, 
reinforcing the validity of the system.

There are several contributions that this study makes. First and foremost, the main 
contribution is presenting the first-ever smartphone-based system for the early stag-
ing of NIDDM by incorporating DR and HAR with Graph Neural Networks (GNN). 
Second, time-series data for 23 activities that help identify symptoms of NIDDM were 
collected using tri-axial smartphone sensors in four possible pocket orientations from 
12 volunteers for the HAR phase of this system. To obtain more detailed data, differ-
ent activities were classified into three levels: normal, moderate, and vigorous, taking 
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into mind that energy loss correlates to activity intensity. To improve system reliabil-
ity, data collection was extended to include both indoor and outdoor settings. Third, 
using GAT to capture internal connections in time-series tri-axial smartphone sensor 
data is novel as opposed to RNN/transformer for modeling temporal dependence. GAT 
is computationally efficient, eliminates costly matrix operations, may act on all nodes 
at the same time, and easily manages varying node significance while operating on var-
ied neighborhood sizes without prior knowledge of the entire graph structure. Fourth, 
activities irrelevant to NIDDM were also identified to prevent false recognition and 
increase system robustness. Fifth, as DR lesions are hardly square but rather irregularly 
shaped, the traditional technique of applying CNN-based architecture would be ineffec-
tive in this scenario. CNN analyzes images as grid structures, limiting its capacity to deal 
with complex and irregularly shaped lesions in fundus images alone. To overcome the 
limitations of employing typical CNN-based models for DR grading, GCN was used in 
this study with tunning hyperparameters. The novel ensemble of GCN-based ViG and 
CNN-based EfficientNet-B5 models considered both irregular and regularly shaped 
lesions in retinal fundus images, outperforming earlier state-of-the-art works. Sixth, the 
results of the whole system from four experimental subjects were verified and validated 
by the A1C medical testing reports of the experimental subjects. Seventh, to strike a bal-
ance between accuracy and energy efficiency, this work adopted a low frequency of 1 
Hz for the HAR process, ensuring steady accuracy while minimizing energy consump-
tion. Notably, prior researchers frequently collected sensor data at a frequency of 50 Hz, 
which used plenty of energy.

The main contributions of this work are summarized as follows:

•	 Introduced the first-ever smartphone-based system for early staging of NIDDM by 
integrating DR and HAR with Graph Neural Networks (GNN).

•	 Collected time-series data for 23 activities using tri-axial smartphone sensors in four 
pocket orientations from 12 volunteers.

•	 Activities are classified into three levels: normal, moderate, and vigorous, consider-
ing the correlation between energy loss and activity intensity.

•	 Used GAT to capture internal connections in time-series data, offering computa-
tional efficiency and managing varied node significance without prior knowledge of 
the graph structure.

•	 Identified and excluded activities irrelevant to NIDDM to prevent false recognition 
and improve robustness.

•	 Addressed the limitations of CNNs in handling irregularly shaped DR lesions by 
using a novel ensemble of GCN-based ViG and CNN-based EfficientNet-B5 models.

•	 Validated the system’s results with A1C medical testing reports from four experi-
mental subjects.

•	 Adopted a low frequency of 1 Hz for the HAR process to balance accuracy and 
energy consumption.

The rest of this article is organized as follows. "Introduction" section of this article 
introduces the motivation and necessity of this study. "Literature review" section cover 
in-depth reviews of the literature that will guide the readers further into the areas of 
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research. "Datasets description and Proposed system" sections include a description of 
the dataset used and the proposed methodologies. "Results and discussion" section con-
tains the results and discussion and "Conclusion" section presents the conclusions of this 
study.

Literature review
It is widely known that sedentary behavior (e.g. such as lying down, standing up, sit-
ting) and a lack of physical exercise are connected with higher health risks for NIDDM 
[6, 7]. General exercise can serve as a preventive measure against NIDDM, and more 
intensive physical activities are probably even more beneficial than less intensive activi-
ties. Colberg et al. [8] emphasized the benefits of long-term periodic activities, provided 
that these maintain the necessary compliance levels or prevent hyperglycemia lowering 
triglyceride-rich very low-density lipoproteins (VLDL) readings. An eight-year follow-
up on a cross-sectional study of 87,253 American women aged 34 to 59 found that the 
risk factor for NIDDM was two-thirds lower in the most active women than in the least 
active women [9]. These studies suggest that the most involved persons with sedentary 
behavior and physical activities had a two-thirds reduced risk of NIDDM than those 
who were least actively engaged. Hence, DiabSense took into account various sedentary 
behaviors and physical activities for its Human Activity Recognition (HAR) module to 
generate NIDDM risk factors.

Sedentary behaviors and physical activities can be detected with HAR systems. HAR 
has been a subject of interest since the 1980 s, owing to its applicability in diverse fields 
like safety, medicine, sports, robotics, HCI, elderly care, behavioral biometrics, and 
more [11]. Retrospectively, various sensors data (e.g. accelerometer, gyroscope, tempera-
ture, relative humidity, camera) were used by scholars to recognize physical activities 
in the HAR framework [12–16]. Some studies employed camera and ambient sensors 
to capture photos or video to execute HAR [17–20]. Few of the studies used wearable 
sensors to convert human motion into signal patterns for HAR [21–25]. Smartphone 
sensors were also widely utilized in studies for the incorporation of HAR [26–28]. Gui-
doux et al. [29] proposed a technique for activity prediction based on embedded sensors 
in smartphones to quantify energy expenditure while identifying spontaneous physical 
activities. In some instances, researchers have focused on individual sensors for activ-
ity detection (e.g. using only an accelerometer sensor) [30–33]. Sensor-driven systems 
rely on user-technology collaboration, requiring a balance between user rights and sys-
tem efficiency. Cameras are the most popular for HAR among all other sensors since 
the users are visible in the display. However, such systems can raise privacy concerns 
for users. DiabSense tackles this issue by using only a smartphone accelerometer sensor. 
Wearable and embedded smartphone sensor-based approaches for activity recognition 
systems typically avoid user privacy issues. Furthermore, unlike wireless signals-based 
methods, smartphones are not location-dependent and do not pose any health risks due 
to radiation.

Researchers have adopted various deep learning algorithms with mobile sensor data 
to implement HAR due to its suitability for field research [22]. Ignatov [31] identified 
six activities using tri-axial accelerometer sensor data from the WISDM and UCI data-
sets with their proposed CNN architecture. The author got 93.32% overall accuracy 
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on WISDM and 97.62% on the UCI dataset. The researchers Alsheikh et  al. [34] con-
structed a DBN along with various conventional and widely used classifiers with accel-
erometer sensor data from benchmark Skoda, Daphnet, and WISDM datasets, and got 
an accuracy of 89.38%, 91.5%, and 98.23% respectively. In their study, Ha and Choi [30] 
employed a multimodal CNN that utilized two-dimensional kernels. They applied this 
approach to both the M-health and Skoda datasets, achieving impressive accuracy rates 
of 98.26% and 97.92% respectively. Xia et al. [35] achieved 95.78% in UCI-HAR, 95.85% 
in WISDM and 92.63% in OPPORTUNITY dataset by applying LSTM-CNN. LSTM-
CNN was first trained on their dataset collected from different mobile sensors. Another 
study determined that kNN was the best classifier [36]. They applied kNN on the accel-
erometer and gyroscope sensors collected from the iPod. The researchers demonstrated 
accuracy in several individual activities but failed to successfully distinguish very similar 
activities. Uddin and Soylu [25] introduced a HAR system based on LSTM-based Neural 
Structured Learning (NSL). They trained NSL on data from wearable body sensors and 
achieved 99% accuracy on the MHEALTH dataset. Bao and Intille [37] from MIT are 
notable for having the most cited work in HAR. They collected data from five biaxial 
wireless accelerometers positioned across various body regions and achieved over 80% 
accuracy with a Decision Tree classifier. According to their findings, wireless or mobile 
embedded accelerometers placed on the thigh were highly successful in activity recog-
nition. It is clear from the reviews that recent advances in HAR systems owe much to 
efficient deep learning algorithms featuring numerous layers and parameters in the mil-
lions. However, these algorithms also exhibit weaknesses. While LSTM is widely used 
for modeling time-sequential events, it faces challenges like the vanishing and explod-
ing gradient problem hindering long-term information processing. On the other hand, 
CNNs designed for grid-like data such as images, are less adept at handling sequential 
structures like time series data. Additionally, the computational complexity of onboard 
training for DBN in mobile and wearable sensors arises from an extensive parameter 
initialization process. The graph attentional layer used throughout Graph Attention 
Network (GAT) comes to the rescue since it is computationally efficient, avoids costly 
matrix operations, can operate on all nodes simultaneously, and easily handles different 
node importance while operating on different neighborhood sizes without knowing the 
whole graph structure beforehand [38]. Therefore, DiabSense incorporated GAT into the 
Human Activity Recognition (HAR) segment of the framework.

HAR with sensor data-based systems have received more attention in recent years, 
particularly when it comes to tracking the health or diseases of a person since the condi-
tions are linked to the patterns observed in daily activities [39]. For instance, Umbricht 
et  al. [40] worked on Schizophrenia patients using HAR. A multi-level feature fusion 
approach for multimodal HAR in smart healthcare applications was presented by Islam 
et al. [41]. Papadopoulos et al. [42] worked on Parkinson’s disease detection with IMU 
sensor and multi-modal dataset. The researchers Preece et al. [43] proposed HAR sys-
tems as a means of connecting prevalent illnesses to people’s levels of physical activity. 
The authors also examined their systems with everyday activity patterns that aided in the 
treatment and detection of neurological illnesses.

A significant gap in prior research lies in the absence of HAR being utilized for early 
NIDDM diagnosis, particularly in the case of DR not being integrated with HAR. 
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DiabSense addresses this gap by incorporating HAR into the framework. DR stands out 
as the most common complication of NIDDM besides cardiovascular diseases, gastritis, 
nerve and kidney damage, etc [44].

NIDDM patients tend to skip routine eye screening due to time constraints, lack of 
symptoms, and limited access to specialists [45]. Therefore the risk of developing DR 
gets high. One effort to overcome this is the use of artificial intelligence (AI) approaches 
for DR detection and diagnosis. Gulshan et al. [46] proposed an Inception-v3 network 
trained on 0.13 million images evaluated by 54 U.S. board-certified ophthalmologists. 
The model, tested on two different datasets classified by 7 U.S. board-certified ophthal-
mologists and achieved an AUC of 0.97−0.99 for detecting referable DR. Gulshan et al. 
[47] further validated the performance of the DR grading system across two sites in 
India compared to manual grading. On the Messidor-1 and Aptos 2019 datasets, Gang-
war and Ravi [48] used a pre-trained Inception-ResNet-v2 and added a custom layer on 
top to obtain accuracies of 72.33% and 82.18%, respectively. Kassani et al. [49] developed 
Xception architecture with the integration of CNN layers and showed 83.09% accuracy 
their model on the Aptos 2019 dataset outperformed other CNN-based pre-trained 
models. Bodapati et al. [50] developed a DNN which they trained with blended multi-
modal deep features and got around 81% accuracy on the Aptos 2019 dataset. The fea-
tures were extracted using several pre-trained CNN architectures. Following the same 
feature extraction and blending procedure, Bodapati et al. [51] later trained a composite 
gated attention DNN which performed slightly better than before with an accuracy of 
82.5%. Adem [52] showed segmenting optic disc region from fundus image before train-
ing a CNN gives better results than CNN-only methods alone. Evidently, Convolutional 
Neural Networks (CNN) are the most used in image processing and computer vision 
applications. The conventional approaches of using convolutional neural networks and 
transformers treat images as grid or sequence structures, which may not be ideal for 
capturing irregular and complex objects. To overcome this limitation, DiabSense delved 
into Graph Convolutional Network (GCN) for the DR grading module as it takes into 
account irregularly structured objects in images by extracting graph-level features [53].

Notably, prior researchers often operated with a sensor data collection frequency of 50 
Hz, which consumed significant energy [54, 55]. To strike a balance between accuracy 
and energy efficiency, this work adopted a low frequency of 1 Hz for the HAR process, 
ensuring steady accuracy while minimizing energy consumption

This paper holds significant importance due to its innovative approach to address-
ing the early diagnosis of NIDDM, which is a pressing health concern worldwide. 
The prior studies discussed above have underscored a notable gap by demonstrat-
ing the absence of utilization of HAR and DR grading for early NIDDM diagnosis. 
Moreover, previous researchers have worked on DR and smartphone-based HAR in 
the healthcare domain separately [48, 51, 56–64], but there was an absence of HAR 
and DR being jointly utilized for early NIDDM diagnosis. This work addresses this 
gap by incorporating both into the same framework. Current methods for diagnos-
ing NIDDM involve invasive and expensive tests, such as blood glucose tests, oral 
glucose tolerance tests, and A1C tests. These tests are often only performed when 
patients exhibit symptoms of the disease, which may be too late for effective treat-
ment. The DiabSense system introduced in this paper addresses this challenge by 
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providing a non-invasive, cost-effective method for early NIDDM diagnosis, reduc-
ing the reliance on costly routine medical checkups until the system detects early 
signs of NIDDM. The system encourages people to undergo clinical testing proce-
dures using only their smartphone sensors. This also reduces the need for expensive 
routine medical examinations. Furthermore, there is no longer a need for people to 
rely solely on apparent symptoms.

The DiabSense system method was chosen for several reasons based on prior 
research findings and methodological considerations. Firstly, previous studies have 
established a correlation between human activities and NIDDM risk factors. To lev-
erage this connection, the DiabSense system integrated the HAR module into the 
system to generate NIDDM risk factors. Secondly, concerns regarding user privacy 
and health risks associated with conventional sensor-based systems, such as camera 
sensor-based systems and wireless signal-based radiations, have been highlighted in 
earlier research works. To address these concerns, this study opted to utilize smart-
phone sensors for the data collection process in the HAR phase of the system. By 
leveraging smartphone sensors, the study aimed to mitigate privacy risks and health 
concerns while still effectively capturing relevant data for analysis. Moreover, tra-
ditional Long Short-Term Memory (LSTM)-based approaches have exhibited com-
putational inefficiencies, particularly concerning the vanishing gradient problem, 
which hampers long-term information processing. Consequently, the GAT model 
was selected for the HAR phase of this system due to its computational efficiency, 
ability to avoid costly matrix operations, simultaneous operation on all nodes, and 
capacity to handle different node importance levels without necessitating prior 
knowledge of the entire graph structure. Furthermore, prior research has established 
DR as the most common complication of NIDDM, serving as a valid biomarker of 
the detrimental consequences of NIDDM in individuals. To enhance the system’s 
robustness in the final decision-making process, this system classified DR grades 
and fused the grade report with risk factors generated from HAR. GCN-based ViG 
model was employed for the DR grading task, addressing the limitations of tradi-
tional CNN-based architectures in handling irregularly shaped DR lesions. Overall, 
by integrating HAR and DR grading into the framework and employing advanced 
models like GAT and GCN-based ViG, the proposed system aimed to effectively pre-
dict early diagnosis while addressing privacy, health, and computational efficiency 
concerns highlighted in prior research works.

Datasets description
Retinal fundus image

The benchmark Aptos 2019 [10] dataset was used for DR grading. The dataset includes 
a large set of retinal images captured from rural areas by Aravind Eye Hospital techni-
cians utilizing fundus photography under various imaging conditions. A clinician graded 
each image on a scale of 0 to 4 for the severity of DR. Since the dataset was gathered via 
a Kaggle competition, their corresponding test images were kept private. As a result, the 
3,662 training images were used. The number of fundus images and representative sam-
ples from each class is shown in Table 1 and Fig. 1 respectively.
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Sensor data and targeted activities

Prominent scholars in the field of HAR have incorporated accelerometer sensors into 
their research endeavors, yielding commendable outcomes [31, 34, 37]. In alignment 
with this trend, the research integrates accelerometer sensors, anticipating valuable 
insights and outcomes. At a 1 Hz frequency, we have collected smartphone-embed-
ded tri-axial accelerometer sensor data of 23 activities through a smartphone app. A 
tri-axial accelerometer is a sensor that provides estimates of velocity and displace-
ment in addition to acceleration along the x, y, and z axes.

In the context of HAR aimed at assessing Diabetes risk factors, we have selected 
physical activities closely linked to diabetic symptoms. The selected 23 activities were: 
Walking-normal (A1), Walking-moderate (A2), Walking-vigorous (A3), Standing (A4), 
Walking upstairs-normal (A5), Walking upstairs-moderate (A6), Walking upstairs-
vigorous (A7), Walking Downstairs-normal (A8), Walking Downstairs-moderate (A9), 
Walking Downstairs-vigorous (A10), Drinking (A11), Eating (A12), Itching (A13), Lying 
(A14), Using toilet (A15), Jogging (A16), Cycling (A17), Irrelevant activities (A18), Driv-
ing (A19), Sitting (A20), Exercise-dips (A21), Exercise-leg raise (A22), Push up (A23).

The 23 activities are related to the diverse nature of diabetic conditions. Activi-
ties associated with cardiovascular movements e.g. walking, jogging, cycling, aerobic 
exercise e.g. push-ups, and strength training exercises e.g. leg raises were linked to 
blood glucose control complexities. Recording the urination log involved recognizing 
activities like drinking and eating, and identifying physical weakness was facilitated 
by acquisition activities like falling. The ability to identify actions such as reclining, 
sitting, itching the genitals, and standing improved the capacity to identify symptoms 
associated with type 2 Diabetes. In pursuit of more specific data, taking into account 
that energy loss depends on activity intensity, several activities were categorized into 
three levels: Normal, Moderate, and Vigorous.

Fig. 1  Samples of each class labels from Aptos 2019 dataset

Table 1  Number of fundus images per class for Aptos 2019 dataset

Severity Label No of samples Ratio in %

0 No DR 1805 49.29

1 Mild DR 370 10.10

2 Moderate DR 999 27.28

3 Severe DR 193 5.27

4 PDR 295 8.06

Total 3662
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The process of collecting data began with the help of 12 volunteers. Half of them 
were young, while the other half were aged 50 or above. All participants were in good 
health without significant physical issues. The dataset used in the trial consisted of 
around 7,500 instances for each diabetic symptomatic activity, excluding the activities 
that were deemed irrelevant. Irrelevant activities totaled 36,000 occurrences. Sensor 
data for irrelevant activities were also collected to avoid false positives (incorrectly 
accepting that a smartphone is not being used during human activity) or false nega-
tives (incorrectly rejecting the use of a smartphone during any activity). Smartphones 
may be temporarily placed on surfaces or utilized for various reasons. Users might 
engage in activities such as browsing, typing, or talking, whether seated, standing, or 
lying down, all categorized separately as irrelevant activities. A significant concern 
requiring resolution was the capability of a person to place the smartphone in any 
pocket position, be it flipped, upside down, or downside up. Addressing this, data 
was collected with the phone positioned in four possible pocket orientations. To 
enhance system robustness, data collection extended across both indoor and outdoor 
scenarios. Subjects engaged in walking activities in diverse locations, encompassing 
malls, both free and busy roads, in rooms, with sensors capturing walking data. Sit-
ting modes, including squatting and normal sitting for toilet use, were also examined, 
and sensors recorded data on both lower and higher commodes. In total, the dataset 
comprises 201,000 occurrences across 23 activities.

Proposed system
This section details the process of building and executing the DiabSense system. Fig-
ure 2 provides all the necessary steps followed.

Fig. 2  The DiabSense system architecture



Page 11 of 37Alam et al. Journal of Big Data          (2024) 11:103 	

Architecture description

In the initial phase depicted in Fig.  2—Step 1 (a) DR Grading, various preprocess-
ing techniques were applied to the Aptos 2019 retinal fundus dataset [10]. Later, in 
the graph conversion part, every image got converted into 16x16 size patches. Treat-
ing each patch as a node by connecting neighboring patches every image was trans-
formed into graphs which eventually served as input for training ViG.

Moving to Step 1 (b), the Human Activity Recognition phase involved gather-
ing sensor data capturing both symptomatic and asymptomatic activities of diabetic 
individuals via smartphones. This data was collected from a group of 12 volunteers 
who willingly participated in the study. Preprocessing techniques were applied before 
feeding sensor data into the GAT model.

Next, experimental subjects were evaluated for their risk for Diabetes and they 
provided labelless retinal pictures and 30 days of sensor data, which were then sym-
bolically represented using the results. Four target experimental subjects initially 
provided labelless retinal images in the first stage of Fig.  2—Step 2 (a). The images 
were then classified using the trained ViG model. Notably, a soft voting ensemble of 
ViG and EfficientNet-B5 showed improved performance on the Aptos 2019 dataset, 
leading to its adoption for classifying the experimental subjects’ images. Resulting DR 
grade reports were generated from these classifications.

In Step 2 (b), 30 days of sensor data from the four experimental subjects were col-
lected and classified using the GAT model pre-trained on volunteers’ smartphone 
sensor data. This facilitated the calculation of average activity time intervals for each 
subject, contributing to the creation of the chronicle of average activities.

Step 3 involved surveying the Sylhet Diabetic Hospital to gather data from diabetic 
patients. From a sample of 97 diabetic patients, their primary daily activities average 
time intervals along with secondary biological data were gathered. Their dataset was 
finalized as “Diabetes Patients’ Data”.

In the similarity measurement phase, cosine similarity was employed to measure 
the similarity between the activity chronicles of experimental subjects and the data 
from diabetic patients. This similarity measurement aided in assessing the diabetes 
risk factor for each subject. Later, their risk factor and DR grade report fused to gen-
erate a final robust decision regarding their early diagnosis requirements. All archi-
tecture components have been thoroughly detailed in the subsequent sections.

Diabetic retinopathy (DR) grading

The first step of the DiabSense system architecture involves grading DR from reti-
nal fundus images. The nature of this problem is challenging and noisy. The assess-
ments provided by doctors, when accessible, exhibit significant variation. According 
to Fig. 3, each row represents patient images and each column is US-board certified 
ophthalmologist graders. It is observed that one doctor may classify an eye as severity 
level 3, while another doctor may classify it as level 1. Interestingly, certain doctors 
may even assign a severity level of 4! Supporting evidence from the Tensorflow sum-
mit was presented by Google [65].
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Pre‑processing fundus Images

80% of the Aptos 2019 data was applied for training, while the rest was used for testing. 
Resizing and cropping uninformative areas of the fundus images were conducted to pre-
vent model overfitting and erroneous pattern learning. Images larger than 1024px were 
adjusted to that size while maintaining their aspect ratio. This maintains the original 
object composition which is crucial for lesion detection. The dataset images had incon-
sistent black spaces around the retina which may impact the model learning (sample evi-
dence in Fig. 4—Original). This was addressed by cropping the spherical z-space based 
on the circle radius and center of the fundus images (Fig. 4—Resized and Cropped).

One issue that remained with the images was uneven brightness which was causing 
some images to look very dark and it was difficult to visualize the lesions as the retinal 
images were captured under varied imaging conditions. To enhance the performance of 
ViG and distinguish lesions like hemorrhages, hard exudates, cotton wool patches, aneu-
rysms, and abnormal blood vessel growth, Gaussian filter was applied to equalize bright-
ness. See a sample result in Fig. 4—Gaussian Filtered.

When an RGB image is loaded in memory, the pixel values range from 0 to 255 as 8-bit 
integers for each of the three channels. However, neural network models prefer floating-
point values within a smaller range. Hence, the images were normalized using Z-Score 
normalization to reduce skewness and enhance the training stability of the training 
model.

Fig. 3  Inconsistency among ophthalmologists. X-axis represents ophthalmologist graders and Y-axis 
represents patient images [65]

Fig. 4  Preprocessings of Aptos 2019 dataset
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This technique was useful as the dataset did not have extreme outliers that needed 
clipping. Initially, channel-wise mean and standard deviation (see Table 2) were cal-
culated. The calculation began by taking the dataset images in a Python programming 
language list. Then initialization of accumulators was done to store the sums and sums 
of squares for each channel across all images in the dataset. The storing process was 
done by iterating through each image, separating the red, green, and blue pixel val-
ues, and updating the sums and sums of squares accordingly for reach channels. After 
processing all images by iteration, the mean for each channel was calculated by divid-
ing the accumulated sum by the total number of pixels. Then, the variance is found by 
dividing the accumulated sum by the total number of pixels and then subtracting the 
square of the mean from this result. The standard deviation is then obtained by taking 
the square root of the variance. The mean and standard deviation were then utilized 
in the z-score normalization equation to achieve normalization in the range of -10 to 
10, centered around 0, promoting faster convergence (refer to Fig. 5). A sample nor-
malized image is shown in Fig. 4—Normalized.

The Aptos 2019 dataset displayed class imbalance with significant variations in sam-
ple numbers across classes. This could potentially result in a biased model. To attain 
more balanced class distributions within training batches, an oversampling approach 
was employed. Initially lacking sufficient images from the minority class, training 
batches in Fig. 6 achieved more balanced class distributions in Fig. 7 after oversam-
pling. Figure   8 shows average representation across all batches was nearly identical 

Table 2  Normalized channel mean and standard deviation

Channel Mean ( µ) Standard 
deviation 
( σ)

Red 0.5023 0.0985

Green 0.5019 0.0813

Blue 0.5018 0.0379

Fig. 5  Pixels distribution of the image in Fig. 4—Normalized
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which ensured the model received a consistent proportion of data from each class 
during training.

Augmentations (follow Fig.  9) were applied to make the model robust from noisy 
data and promote better generalization by diversifying the training dataset. Overfit-
ting happens when a model becomes highly specialized in collecting patterns from 
noisy data, resulting in high variance, and poor generalization to unknown samples. 
Image augmentation tackles this by introducing variations to the training dataset, 
which prevents the model from memorizing specific details and promotes improved 

Fig. 6  Training datasets class distribution per batch before sampling

Fig. 7  Training datasets class distribution per batch after sampling

Fig. 8  Average representation of images per class across all batches (a) before and (b) after sampling
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adaptability in a wide range of scenarios. In every epoch, each image was assigned a 
random selection from the pool of four augmentations or no augmentation at all.

Graph convolutional network: ViG

GCN is a form of convolutional neural network that can operate directly on graphs and 
exploit their structural properties. GCN may be trained for visual tasks by extracting 
graph-level information from photos. GCN learns by altering and transferring data 
across all nodes. This work followed the GCN-based Vision GNN (ViG) model for DR 
grading which was proposed by Han et al. [53]. Figure 10 shows the overall structure of 
the ViG model framework. First, images are converted into graph structures by divid-
ing them into different patches. The converted graph representation of the image then 
enters the ViG network, which consists of two fundamental modules: the Grapher and 
FFN. The Grapher module contains graph convolution, where the aggregation and 
update processes occur between graph nodes. The FFN module transforms graph node 
features, promotes node diversity, and mitigates the over-smoothing issue of standard 
GNNs.

Figure 11 shows the overall ViG network block used in this work. The ViG network 
block is a stack of DeepGCN blocks. Each pair of Grapher and FFN modules forms a 
DeepGCN block. Both the Grapher and FFN modules have skip connections. The Gra-
pher module consists of 2D convolutional layers (conv2d) with 48 kernels of size 1x1, 
a Graph Convolution layer, and batch normalization layers. Similarly, the FFN module 
also includes conv2d layers with the same configuration as the Grapher module, along 
with batch normalization layers and a Gelu activation function. More detailed elabora-
tion of ViG on input data is provided below:

To build a graph structure of an image, dimensions H ×W × 3 get split into N 
patches. Every patch undergoes a transformation, resulting in a feature vector repre-
sented as xi ∈ R

D , a set of features X = [x1, x2, . . . , xN ] obtained where i ranges from 1 

Fig. 9  Augmentations

Fig. 10  ViG model framework
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to N and D represents feature dimension. The features are interpreted as a set of unor-
dered collections of nodes V = {v1, v2, . . . , vN } . To establish connections between nodes, 
K-nearest-neighbors N (vi) get identified for every vi and create directed edges eji from 
vj to vi for all vj ∈ N (vi) . This process yields a graph G = (V ,E) , where all edges are rep-
resented as E. The above whole process of constructing the graph can be denoted as 
G = G(X).

The main Graph-level processing X ′ = GraphConv(X) was initiated with the feature 
matrix X ∈ R

N×D . Using these features the first step involved constructing a graph: 
G = G(X) . Graph convolutional layer facilitates the transfer of data among nodes by 
gathering features from neighboring nodes and it functions as follows [53],

where, the learnable weights WU and WA are used for the update(U) and aggregation(A) 
operations, respectively. F(G,W) represents a general graph convolution operation 
at the l-th layer. This can be further derived as U(A(G,WA),WU ) for a more detailed 
explanation. G is the input graph and G′ is the output graph at the l-th layer. Aggregation 
operation A combines the features of neighboring nodes from graph G and learnable 
weights WA to compute the representation of a node, while update operation U com-
putes new node representation by applying a non-linear transform on aggregated data 
to further combines the aggregated feature generated from aggregation operation A and 
learnable weights WU . At each layer, the representation of nodes is calculated by aggre-
gating neighbor node features for all nodes as below [53],

where, N (xi) is the set of neighbor nodes of xi at the l-th layer, h is a node feature update 
function, g is a node feature aggregation function, xi is node features at l-th layer and x′i 
is node features at l + 1-th layer. In the node feature aggregation function g, the set of 
neighbor nodes N (xi) of xi got aggregated with learnable weights WA . Later, the aggre-
gated data from aggregation function g got further merged with xi and learnable weights 

(1)G′ = F(G,W) = U(A(G,WA),WU ),

(2)xi
′ = h

(

xi, g(xi,N (xi),WA),WU

)

,

Fig. 11  ViG Network layers
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WU . For efficiency and simplicity, Max-Relative Graph Convolution [66] gets adopted in 
aggregation process:

In Equation (3) and Equation (4) [53], the bias is ignored. In Equation (3), a max-pool-
ing node feature aggregator is used to pool the differences between the features of node 
xi and those of all its neighboring nodes xj . In Equation (4), the resulting aggregation 
data x′′

i  further went on node feature update function h to generate node features x′

i at 
l + 1-th layer. Besides, in Equation (5), a multi-head update process of graph convo-
lution was introduced. The aggregated feature x′′i  is divided into h number of heads, 
namely head1, head2, . . . , headh , and each head is updated with its own set of weights 
W 1

U
,W 2

U
, . . . ,Wh

U
 . It is possible for every head to update simultaneously and then inte-

grated to form the final value [53]:

The model may update information in several representation subspaces utilizing the 
multi-head update procedure, which benefits feature diversity.

The over-smoothing issue in deep GCNs [67, 68] reduces the uniqueness of node fea-
tures. Therefore degrades visual recognition ability. To address this issue, before and 
after applying the graph convolution, a linear layer is incorporated to project the node 
features onto a common domain, promoting feature diversity. After the graph convolu-
tion, a nonlinear activation function is introduced to prevent the collapse of layers. This 
enhanced module is referred to as the Grapher module [53]:

where, Y ∈ R
N×D , fully connected layers weights are Win and Wout , activation function 

is σ (GeLU). Bias is ignored. Previously, in Equation (1), F(G,W) represented a general 
graph convolution operation at the l-th layer. Equation (2) to Equation (5) were used to 
further elaborate on this general graph convolution operation at the l-th layer. The whole 
graph convolution operation for all the layers is represented with GraphConv(XWin) 
function. A non-linear activation function σ is used on the output of GraphConv(XWin) 
function. To tackle the degradation problem, the information from the previous graph 
convolutional module was transferred to this module through the matrix addition of X.

Feed-forward networks (FFN) are used on each node to boost feature transformation 
capacity and the over-smoothing problem. The FFN module constitutes a two fully-con-
nected multi-layer perception [53]:

where, Z ∈ R
N×D , fully connected layers weights are W1 and W2 , and bias is ignored. 

The output from the Grapher module, Y  , was multiplied by the fully connected layer 
weight W1 before a non-linear activation function σ was applied. Subsequently, W2 was 

(3)g(.) = x′′i =
[

xi,max
{

xj − xi|j ∈ N (xi)
}]

,

(4)h(.) = x
′

i = x
′′

i WU .

(5)x
′
i =

[

head
1
W

1
U , head

2
W

2
U , . . . , head

h
W

h
U

]

(6)Y = σ(GraphConv(XWin))Wout + X ,

(7)Z = σ(YW1)W2 + Y ,
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applied, and a skip connection from the previous Grapher module was incorporated into 
this module through the matrix addition of Y  . The hidden dimension of FFN is larger 
than the feature dimension D. Batch normalization is conducted following each graph 
convolution and fully-connected layers in both the Grapher and FFN modules, which 
is removed in Equation (6) and Equation (7) for simplicity. The ViG block is a stack of 
Grapher and FFN modules. These modules are the fundamental building blocks for 
developing a Network. The constructed ViG network is illustrated in Fig. 10 according 
to the above procedures. The Network block in Fig. 10 is further illustrated with details 
in Fig. 11.

Human activity recognition (HAR)

The GAT classifier is effectively implemented to recognize human actions in this stage.

Sensor data processing

80% of the sensor data were used for training and the rest for testing. There were no 
null values which eliminated the need for any preparation to handle missing values. 
Following that, outliers were looked for to find and remove unusual patterns in data 
arrangement.

where, Q1, Q2, Q3 are lower, middle and upper quartiles respectively. Data points that 
lie below the lower limit or above the upper limit are potential outliers. For every fea-
ture, the outliers were replaced with the mean of that axis value.

A z-score normalization was used on each data point x to keep the axis values in a 
standard scale.

where, mean is µ , standard deviation is σ and x′ is normalized value of data. A new fea-
ture was added by calculating the magnitude of three accelerometer axes,

where, ax , ay and az are accelerometer values of x, y and z axes, respectively.

Graph attention network

GAT is a form of Graph Neural Network (GNN) that uses attention processes to learn 
features from graphs. GAT provides a more complex way of gathering neighborhood 
information than typical GNNs. This model gives an attention value to each neighbor, 
signifying how important the neighbor’s features are for the node’s feature update. These 
coefficients are calculated employing a shared self-attention method, which assigns 
an attention score to each pair of nodes. The scores are then standardized across each 
node’s neighborhood with the SoftMax function.

(8)Upper limit = Q3+ 1.5(Q3− Q1)

(9)Lower limit = Q1− 1.5(Q3− Q1)

(10)x′ =
(x − µ)

σ

(11)magnitude =
√

a2x + a2y + a2z
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Among the models explored in this work, the GAT-based Graphsensor from the 
authors Ge et  al. [69] showed the best performance. Figure  12 illustrates the overall 
architecture of Graphsensor.

The two main components of their proposed technique are relationship learning 
Grl(V) = Vmh and signal segment representation Fsr(S) = V , where Vmh = multi-head 
features, and V = feature map.

Following the methodology from Ge et al. [69], the sensor data X = {x1, x2, .., xl} ∈ R
1×L 

got split by overlapping sliding window with constant length N (N ∈ N,N > 1) and over-
lap rate P(P ∈ (0, 1)) to generate a set of signal segment S = {s1, s2, .., sK } ∈ R

K×D . Here, 

L	� = Length of the time series
K	� = Number of signal segments
D	� = Signal segments dimension

Signal segments are used to evaluate the inner relationships in a particular time series. 
The length of the signal segment is actually the length of the sliding window N. Equation 
(12) represents the calculation of the number of signal segments K below [69],

Different combinations of sliding window size (N), overlap rate (P), and time series data 
length per epoch (L) were tested to find the optimal parameter values (shown in Table 4). 
The accelerometer sensor data length per epoch (L) for each axis was 64 throughout the 
training process of the HAR dataset. From this, 15,001 signal segments (K) were created 
using Equation (12) with a window size of 40 datapoints (N) and a 0.99996 overlapping 
rate (P). Signal segment representation is a convolutional encoder that involves map-
ping signal segments S to a feature space V = {v1, v2, .., vK } . The convolutional encoder 
contains three 1D convolution layers, the first of which uses a large kernel with a size 
of 1x49 to improve the performance of CNN by greatly extending its effective receptive 
field [70]. The feature map is then extracted from the remaining 2 layers using a smaller 
kernel with a size of 1x7 after that. A residual Squeeze-and-Excitation block [71] is used 
at the encoder’s end to recalibrate the features discovered by earlier convolution layers.

As internal and external factors impact human behavioral changes over time, global 
node attention is implemented following the signal segment representation to learn the 
key factor vector. To learn the key factor vector, the output is then utilized as an input to 
a two-layer fully connected network.

(12)K =

⌊

L− N × P

N − N × P

⌋

.

Fig. 12  Graphsensor overall architecture
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In graph-based self-attention under the Graph Attention Network (GAT) block, the 
edge between the signal segments is formed by the adjacency matrix, which is produced 
to depict the connection relationship between the signal segments based on Pearson’s 
correlation coefficient.

The softmax normalized attention method in this work was inspired by [38]. The coef-
ficients aij calculated by the attention mechanism can be represented as below,

where, the positional encodings are represented by pos1 and pos2 , || represents the con-
catenation operation, aij is attention coefficient, vi , vj and vk are three different features 
from the feature space V , and Sigmoid is used as nonlinear activation function. Self-
attention mechanism a is a two-layer fully-connected neural network. The dimension 
of the new signal segment representation matrix is projected using an adaptive average 
pooling and then utilized as an input to a two-layer fully-connected network to learn the 
attention coefficient vector. The attention coefficient matrix is created by permuting the 
attention coefficient vector. The positional encoding used in this work is a development 
of prior NLP positional encoding techniques [72].

In the case of multi-head attention, a convolutional layer is used to extract important 
characteristics from the multi-head matrix, which is seen as one feature map. The dense 
layers and the attention layers together make up the two blocks of the self-attention 
module. In order to project the signal segments to a higher dimension space, 1x1 convo-
lutions are first performed in the dense layer. A multi-head approach is then used to sus-
tain self-attention learning. In the first run, the multiple-head attention block is stacked 
many times. To enlarge the input tensor, a dummy axis is employed, changing the input 
size.

Permuting the signal segment channels from the second dimension to the first dimen-
sion allows to extraction of signal segment features from Vmh . Then, in order to maintain 
the identity of the signal segments, feature extraction is carried out using a depthwise 
convolution with a group size equal to K and padding set to half of the kernel size. The 
features are subsequently mapped using a two-layer feedforward convolutional neural 
network. Additionally, a convolutional layer with the same stride and padding param-
eters as the attention layers are used to map the input dimension to the output. This 
makes it easier to stack skip connections. H identical layers are stacked to make up the 
multi-head attention. After the H identical layers, an adaptive average pooling consoli-
dates the feature map of several heads into a single head.

Working with experimental subjects

In this phase, the trained GAT model was applied on 30 days of label-less sensor data 
collected from four experimental subjects to monitor their activity patterns as part of 
the evaluation for Diabetes risk factors. Simultaneously, retinal fundus images were 
gathered for DR assessment using the trained ViG.

(13)aij =
exp

(

Sigmoid
(

a
[

pos1 × vi||pos2 × vj
]))

∑

k∈Ni

exp
(

Sigmoid
(

a[pos1 × vi||pos2 × vk ]
)) ,
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The Android application was used to gather unlabeled sensor data continuously for 30 
days. Figure 13 shows an eleven-hour continuous data sample from subject-1. Initially, 
height and weight were collected for calculating BMI. Despite potential challenges like 
constant smartphone attachment to the body of experimental subjects and app running 
without crashing, smooth data collection was ensured. Data for experimental subjects 
were recorded at 1 Hz, theoretically amounting to 2,592,000 instances for each subject. 
However, due to issues like unexpected shutdowns, data totaling 928,182 s, 1,152,713 s, 
1,233,233 s, and 951,728 s was obtained from subject-1, subject-2, subject-3, and sub-
ject-4, respectively. On average, this amounted to approximately 8.59, 10.67, 11.42, and 
8.81 h of data per day for each subject. Despite these obstacles, these data were sufficient 
for training GAT and predicting the activity patterns of the subjects. Following tech-
niques from Gonzalez [73], high-quality retinal images were captured using a smart-
phone and a 28D lens.

After applying preprocessing to both types of data collected from experimental sub-
jects, ViG was used for grading DR in retinal images and GAT for predicting activities 
based on sensor data from the last 30 days. Analyzing occurrences of specific activities 
allowed us to calculate the time spent on each activity. The sensor data, collected at 1 Hz 
frequency, provided total occurrences representing seconds spent on activities over the 
last 30 days (shown in Fig. 14). This data was later converted into minutes. Additionally, 
the average time interval for each activity per day was determined by dividing the total 
minutes for each activity over thirty days. This process yielded the daily average duration 
of each activity. From Fig. 14a, it can be observed that subject-1 spent 90,955 s in cycling 
(A17) over 30 days. Converting this into minutes equates to 90,955

60
= 1515.917 minutes. 

That means the subject-1 spent 1515.917 minutes on cycling over 30 days. Hence, the 
daily average duration for cycling would be 1515.917

30
= 50.53 minutes. Similarly, the daily 

average duration for each activity for other activities for an experimental subject was 
calculated. At present, there are DR grade reports alongside the average time intervals of 
activities in hands from the experimental subjects.

Fig. 13  A continuous eleven hours sample of unlabelled triaxial accelerometer sensor data from 
experimental subject-1
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Similarity measurement and risk factor assesment

In this phase, the Diabetes risk factor was assessed using Cosine similarity by com-
paring the data from the experimental individuals with the data from diabetic 
patients. The aim was to comprehend the amount of time diabetic patients devoted 
to various physical activities before being affected by NIDDM. Data were gathered 
from 97 diabetic patients at the Sylhet Diabetic Hospital over two months. Individual 
interviews were conducted. The questionnaire used during the interviews included 
inquiries about secondary information, such as the patient’s gender, weight, height, 
family history of Diabetes, blood pressure status, and time spent on physical activi-
ties. Acknowledging that NIDDM is influenced by genetic factors and lifestyle choices 

Fig. 14  Total elapsed time (in seconds) of each activity from experimental (a) Subject-1, (b) Subject-2, (c) 
Subject-3, and (d) Subject-4 over 30 days



Page 23 of 37Alam et al. Journal of Big Data          (2024) 11:103 	

[74], the secondary information about physical activities was considered primary for 
this work.

Cosine similarity considers the angle between two objects, taking into account their 
characteristics as components of the vector. To ensure fair comparisons across dimen-
sions, the measurements were pre-processed using min-max normalization. Each data 
row of an individual was transformed into its corresponding vector representation. The 
similarity measurement is defined based on the values of θ . When cos θ = 1 , the two 
vectors are similar, and when cos θ = 0 , it indicates that the two vectors or objects have 
no similarity. The Cosine similarity between two objects can be expressed as follows:

Here, Ai and Bi represent segments of vectors A and B, respectively, while A is the exper-
imental subject activity vector and B is the diabetic patient activity vector. ‖A‖ and ‖B‖ 
denote the Euclidean norms of vectors A and B. P is the total number of components, 
amounting to 28 in the context of this work including age, gender, percentage of Diabe-
tes in first-degree relatives, blood pressure, BMI, and the 23 activities.

When the similarity value ( cos θ ) exceeds 75%, the system deduces a likelihood of the 
subject being significantly affected by Diabetes. Conversely, a similarity value ( cos θ ) of 
35% indicates a normal case. Therefore, the system established that a similarity ( cos θ ) 
greater than 75% corresponds to a high-risk factor level, while a percentage below 35% 
corresponds to a low-risk factor level. Moreover, any value of cos θ between 35% and 
75% is considered a moderate risk factor.

(14)cos θ =
A.B

�A��B�
=

∑p
i=1

AiBi

2

√

∑p
i=1

A2
i

2

√

∑p
i=1

B2
i

Fig. 15  Early Diagnosis decision matrix. Here, NEDR = no early diagnosis required, EDR = early diagnosis 
required
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Fusion for decision

At this point, risk factors and DR grade reports are available for the experimental sub-
jects. A final decision will be reached by fusing these two reports with the help of Fig. 15. 
As DR is a complication of NIDDM, it can be assumed that someone who has DR also 
has NIDDM. On that basis, the risk factor and DR grade report were fused to reach a 
final decision and make the DiabSense system more accurate.

Figure 15 shows the early diagnosis decision matrix where “NEDR” stands for “no early 
diagnosis required” and “EDR” stands for “early diagnosis required”. In the matrix, if the 
risk factor is “Low” and the DR report shows “No DR” for a subject, the subject will not 
need an early diagnosis; therefore, “NEDR” will be recommended by DiabSense.

However, for subjects with a “Moderate” or “High” risk factor and a DR report of “No 
DR”, “EDR” will be recommended by DiabSense, indicating that early diagnosis will be 
required. That means the subject needs medical testing or treatment procedures as soon 
as possible. This is because the subject might not have the DR complication yet, but they 
are at a moderate or high risk of developing NIDDM.

If the DR report from the matrix is “Mild DR to PDR”. In that case, it will mean that the 
subject is already experiencing complications from diabetes, regardless of the risk factor 
being “Low”, “Medium”, or “High”. In such cases, early diagnosis is required. Specifically, 
if the DR report is “Mild DR to PDR” and the risk factor is either “Low”, “Medium”, or 
“High”, DiabSense will recommend “EDR”, signifying the need for early diagnosis. How-
ever, incorporating the risk factors in the decision matrix reveals various categories such 
as Diabetic with Mild DR condition, Diabetic with Moderate DR condition, Diabetic 
with Severe DR condition, and Diabetic with Proliferative DR condition. Each category 
requires medical testing and treatment for Diabetes and DR, tailored to the severity of 
the condition.

Results and discussion
Classification report on DR grading

Upon fine-tuning the hyperparameters, ViG achieved a classification accuracy of 81.18% 
for the Aptos 2019 dataset. Fine-tuning was done in the manual searching process 
where different combinations of hyperparameter values were selected to evaluate the 
performance of the model during training. The final optimal hyperparameters for the 
models trained on the Aptos 2019 dataset are shown in Table  3. Figure  16 shows the 
training session accuracy and loss curve of GCN based ViG model. We have also trained 

Table 3  Optimal training hyperparameters for Aptos 2019 dataset

Hyperparameters ViG EfficientNet-B5

Optimizer Adam W Adam W

Batch size 64 16

Learning rate 1e − 3 1e − 3

Weight decay 5e − 2 5e − 2

K-neighbor 9 N.A.

Exponential moving avg 0.99996 0.99996

Epochs 114 34
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Fig. 16  a Accuracy and b Loss progression curves of ViG model in Aptos 2019 data

Fig. 17  Confusion matrix of ensembled ViG + EfficientNet-B5
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a ConvNet-based EfficientNet-B5 and achieved 83.79% for the Aptos data. A soft vot-
ing ensemble was applied. As a result, an accuracy of 84.48% was achieved, indicating a 
notable performance improvement (shown in Table 6).

In medical image analysis, maximizing sensitivity is crucial, as it ensures accurate 
identification of affected patients. The primary objective of this system is to detect pre-
diabetic and diabetic patients and encourage them to undergo medical testing before 
their condition worsens. Hence, it is crucial not to misclassify any of the 4 DR condi-
tions as No DR/Healthy which the ensemble of ViG and EfficientNet-B5 has success-
fully achieved (Fig. 17 confusion matrix validates this). Table 6 demonstrates that ViGs 
weighted F1-score, precision, and sensitivity are all close enough, while EfficientNet-B5 
also maintains consistent metric scores, indicating stable performance for both models. 
However, their ensemble performance surpasses both individual models. As evident 
from Table 6, the proposed ensemble outperformed the state-of-the-art models.

Classification report on HAR

The GAT-based Graphsensor model achieved 98.32% classification accuracy with a 
f1-score of 97% on the HAR test dataset. Figure 18 shows the accuracy and loss curve 
and Fig. 20 shows the confusion matrix. The optimal hyperparameters after fine-tuning 
for the GAT model and other traditional models are listed in Table 4. Similar to the DR 
phase, fine-tuning involved manually selecting various combinations of hyperparame-
ter values to evaluate the model’s performance during training. Since the HAR dataset 
is newly developed in this work from smartphone triaxial accelerometer sensors with 
a frequency of 1 Hz, there was no previous work to compare the performance of the 
GAT model on this dataset. Therefore, to assess the proposed method against conven-
tional approaches, standard DBN, CNN, and RNN-based experiments were conducted 
as shown in Fig.  19. Clearly, the GAT-based model outperformed the conventional 
approaches. To check the robustness of this approach, the model was applied to the 
WISDM dataset as testing data, yielding an accuracy of 96%. This shows that the GAT-
based model also outperforms other traditional approaches on the WISDM dataset i.e. 
93.32% accuracy Ignatov [31] with CNN, 95.85% accuracy of Xia et al. [35] with LSTM. 
More comparisons with existing results were shown in Table 7. Thus, the suggested GAT 
based Graphsensor model exhibited a high percentage of success and robustness in iden-
tifying the symptomatic activities of Diabetes.

Table 4  Optimal training hyperparameters for HAR dataset

Hyperparameters GAT​ RNN LSTM CNN-LSTM

Optimizer Adam Adam Adam Adam

Batch size 64 64 128 64

Learning rate 1e − 3 1e − 3 1e − 3 1e − 3

Weight decay 1e − 4 1e − 2 1e − 2 1e − 2

Sliding window size (N) 40 N.A. N.A. N.A.

Overlap rate (P) 0.99996 N.A. N.A. N.A.

Time series data length (L) 64 N.A. N.A. N.A.

Epochs 300 450 400 367
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Reports on experimental subjects

As discussed earlier in the methodology, similarity measurement for an experimental 
subject in this system was performed by calculating the cosine similarity ( cos θ ) between 

Fig. 18  a Accuracy and b Loss progression curves for GAT-based Graphsensor model in HAR data

Fig. 19  Classification scores of the GAT model compared with other state-of-the-art models for the HAR 
dataset of this work (23 classes)
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the chronicles of average activities of an experimental subject and data from diabetic 
patients. Furthermore, as discussed in "Similarity measurement and risk factor asses-
ment" section, a similarity value ( cos θ ) of 35% or lower between an experimental subject 
and diabetic patient data indicates a normal case, meaning the subject is not at risk of 
diabetes. In such cases, the system establishes a risk factor value of “Low”. Conversely, 
when the similarity value ( cos θ ) exceeds 75%, the system deduces a likelihood of the 
subject being significantly affected by diabetes. Therefore, the system establishes that a 
similarity ( cos θ ) greater than 75% corresponds to a “High” risk factor level. Additionally, 
any value of cos θ between 35% and 75% is considered a “Moderate” risk factor.

The average similarity ( cos θ ) estimates with diabetic patient data for all four exper-
imental subjects were visualized in Fig.  21. Among the four experimental subjects, 
the cos θ value obtained for the first experimental subject (ES 1) was 23.46%, for the 
second experimental subject (ES 2) was 28.39%, for the third experimental subject 
(ES 3) was 75.77%, and for the fourth experimental subject (ES 4) was 57.39%. These 
results indicate that the first two experimental subjects (ES 1 and ES 2) are classified 
as “Low” risk factors, the third subject (ES 3) as “High”, and the fourth subject (ES 4) 
as “Moderate”.

Fig. 20  Confusion matrix of GAT model
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Table 5  Fused early diagnosis report summary of experimental subjects

ES experimental subject, NEDR no early diagnosis required, EDR early diagnosis required

Experimental Subject Reports and Decision

DR report Risk factor DiabSense 
decision

A1C level (%)

Subject 1 (ES 1) No DR Low NEDR 5.2

Subject 2 (ES 2) No DR Low NEDR 5.5

Subject 3 (ES 3) No DR High EDR 6.6

Subject 4 (ES 4) Severe Moderate EDR 6.1

Fig. 21  Correlation between diabetic patients and experimental subjects. ES Experimental Subject

Table 6  ViG and ViG+EfficientNet-B5(ensemble) models classification scores compared with 
previously proposed ANN and ConvNet-based state-of-the-art models for Aptos 2019 data (5 
classes)

Method Accuracy Precision Sensitivity F1-score

VGG16 + CapsNet [64] 75.50 – – –

Modified MobileNet [49] 79.01 – 76.47 –

ECOC-SVM [62] 80.70 80.70 80.70 80.70

Blended VGG and Xception + DNN [50] 80.96 – – –

Inception-ResNet-v2 [48] 82.18 – – –

Composite Gated attention DNN [51] 82.54 82.00 83.00 82.00

Modified Xception [49] 83.09 – 88.24 –

Attention-DenseNet [63] 83.69 – – –

Modified VGG16 [84] 84.31 – – 84.00

LA-NSVM [83] 84.31 75.86 66.16 69.90

ViG 81.18 80.39 81.14 81.00

EfficientNet-B5 83.79 83.09 84.00 83.30

ViG+EfficientNet-B5(ensemble) 84.48 84.07 84.55 84.31
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DR classification reports were obtained by feeding retinal fundus images of exper-
imental subjects into the trained ensembled ViG+EffNet model. For the first three 
experimental subjects (ES 1, ES 2, and ES 3), the classification output was “No DR”, 
indicating they have no diabetic retinopathy. For the final experimental subject (ES 
4), the classification output was “Severe”, revealing that the subject is suffering from 
diabetic retinopathy at a “Severe” level.

These experimental subjects’ risk factors and DR classification reports were listed 
in the final report summary (see Table  5). Here, EDR stands for “early diagnosis 
required”, and NEDR stands for “no early diagnosis required”. According to the report 
in Table  5, Subject-1 (ES 1) has a DR report of “No DR” with a “Low” risk factor. 
Therefore, according to the early diagnosis decision matrix in Fig. 15, this subject did 
not require an early diagnosis since the subject has a healthy DR condition and a low 
risk of developing NIDDM. Consequently, “NEDR” is listed in the DiabSense decision 
column,

Similarly, the DiabSense decision for experimental Subject-2 (ES 2) is “NEDR”, as this 
subject has exactly the same risk factor and DR report as Subject-1 (ES 1).

For Subject-3 (ES 3), the DR report is “No DR”, and the risk factor is “High”. This means 
the subject might not have the DR complication yet but is at a high risk of developing 
NIDDM. Therefore, using the early diagnosis decision matrix in Fig. 15, the DiabSense 
decision was “EDR”.

In the case of Subject-4 (ES 4), the DR report is “Severe”, and the risk factor is “Moder-
ate”. This indicates that the subject is already suffering from DR and is also at a moderate 
risk of developing NIDDM. Thus, using the early diagnosis decision matrix in Fig. 15, the 
DiabSense decision was “EDR”.

The results of this system were validated through medical testing, specifically, the A1C 
test conducted on experimental subjects. A1C offers a dependable indicator of blood 
sugar levels and has a strong correlation with the likelihood of developing long-term 
diabetic problems. Pre-analytical and analytical factors are among the many technical 
benefits that the A1C test offers over the glucose laboratory measures that are currently 
in use. According to a research [75], A1C testing is standardized and modified to the 

Table 7  Classification scores of the GAT model compared with previously proposed state-of-the-art 
models for the WIDM dataset

Method Accuracy Precision Sensitivity F1-score

Bi-LSTM [85] 87.62 87.62 87.62 –

Random Forest [86] 88.14 – – –

LMT [87] 90.86 90.00 90.00 90.00

CNN [31] 93.32 – – –

BPR Genetic Algorithm [86] 94.02 – – –

Genetic Algorithm [88] 95.37 – – –

TSE-CNN [89] 95.70 – – –

LSTM-CNN [35] 95.85 95.75 95.75 95.78

Bi-LSTM [90] 95.86 – – –

CNN-BiLSTM [91] 96.05 – – 96.04

CNN-GRU [92] 96.41 96.43 96.42 96.39

GAT​ 96.00 95.93 98.50 97.71



Page 31 of 37Alam et al. Journal of Big Data          (2024) 11:103 	

DCCT/UKPDS criteria, which makes it different from FPG or 2HPG testing when used 
to diagnose diabetes. The A1C test has been found to properly reflect continuous glu-
cose levels and has a strong correlation with the risk of complications from diabetes, 
according to the International Expert Committee for the Diagnosis of Diabetes.

Previous research has suggested that individuals with an A1C level ≤ 5.7% are at no risk 
of diabetes, A1C levels between 5.7% to 6.4% indicate a pre-diabetic condition. A1C level 
≥ 6.5% indicates that the individual has diabetes [75–77]. In Table 5, the DiabSense out-
come for Subject-1 and Subject-2 was “NEDR”, meaning no early diagnosis is required. 
The DiabSense outcome for these two subjects was validated through A1C tests. The 
A1C levels for Subject-1 was 5.2% and for Subject-2 was 5.5%. Since an A1C level ≤ 5.7% 
indicates no risk of diabetes, the DiabSense outcome successfully corresponds with the 
A1C medical testing result. The DiabSense outcome for Subject-3 was “EDR”, meaning 
early diagnosis is required. The subject’s DiabSense outcome was validated through an 
A1C test with a level of 6.6%. As an A1C level ≥ 6.5% indicates that the individual has 
diabetes, the DiabSense outcome is also successfully proportionate with the A1C medi-
cal testing result. Similarly, the DiabSense outcome for Subject-4 was “EDR”, indicating 
early diagnosis is required. The subject’s DiabSense outcome was validated through an 
A1C test with a level of 6.1%. Since an A1C level between 5.7% and 6.4% indicates a pre-
diabetic condition, pre-diabetic patients need early diagnosis. Hence, the DiabSense out-
come successfully fits with the A1C medical testing result. These findings align with the 
conclusions from the proposed system, indicating a high success rate in early diagnosis 
recommendations.

Discussion

Studies that used ANN and data mining techniques for early diagnosis of diabetes did 
not explore the correlation of HAR and DR with NIDDM [78]. The studies focused on 
diabetic symptomatic datasets collected from patients [78], repository datasets with 
neuro-fuzzy-based classifiers [79], and patient health records and illness information 
data [80–82]. In our work, DiabSense demonstrated the correlation between HAR and 
DR with NIDDM in early diagnosis. Specifically, DiabSense has two components: HAR 
and DR grading. Prior research worked with traditional ANN-based models such as 
CNN, LSTM, and their variants. However, DiabSense showed superior performance 
using GNN-based approaches. Our results indicate that GNN-based approaches in the 
HAR and DR domains outperformed the traditional ANN-based approaches.

Table 6 shows the comparison of previously proposed state-of-the-art models with our 
research models for the DR grading phase using Aptos 2019 data. The study proposed 
in [64] achieved only 75.50% accuracy with a hybrid deep neural network (VGG16 + 
CapsNet) formed from CNN-based VGG16 and a capsule neural network, despite aug-
menting the Aptos 2019 dataset to enhance model performance. The CNN-based Modi-
fied MobileNet model in [49] showed improved performance with 79.01% accuracy and 
76.47% sensitivity. A non-CNN-based approach, the Error Correction Output Code 
(ECOC)—SVM model proposed in [62], showed a slight performance improvement with 
80.70% accuracy and an increased sensitivity score of 80.70%. The Blended VGG and 
Xception + DNN [50], Inception-ResNet-v2 [48], and Composite Gated attention DNN 
[51] models showed similar performance in terms of all the performance metrics shown 
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in Table 6. The Modified Xception technique in [49] demonstrated a boost in sensitivity 
with a score of 88.24%, which is higher than our ensembled model (ViG + EfficientNet-
B5), however it falls short in terms of overall accuracy. The Lesion-aware attention with 
neural support vector machine (LA-NSVM) [83] model showed comparable accuracy 
to our work but significantly lacked precision, sensitivity, and F1-score. In contrast, our 
ensemble of ViG and EfficientNet-B5 outperforms all these models with accuracy, preci-
sion, sensitivity, and F1-score of 84.48%, 84.07%, 84.55%, and 84.31%, respectively.

Since the HAR dataset is a newly developed dataset from smartphone triaxial accel-
erometer sensors, there was no previous work for performance comparison. Con-
sequently, the GAT model was applied to the WISDM dataset for a performance 
benchmark. As shown in Table  7, the Bidirectional LSTM (Bi-LSTM) model by Shan 
et al. [85] achieved an accuracy, precision, and sensitivity of 87.62%. The Random Forest 
model proposed by Quaid et al. [86] attained an accuracy of 88.14%, but specific met-
rics for precision, sensitivity, and F1-score were not provided. The Logistic Model Tree 
(LMT) by Nematallah et al. [87] achieved an accuracy of 90.86% with a precision and 
sensitivity of 90.00%. Ignatov [31] achieved an accuracy of 93.32% using a CNN model. 
Quaid et al. [86] reported an even higher accuracy of 94.02% using a Behavioural Pattern 
Recognition Genetic Algorithm (BPR Genetic). The Genetic Algorithm model by Jalal 
et al. [88] achieved a slightly better accuracy of 95.37%, but like the BPR Genetic Algo-
rithm, it did not provide specific metrics for precision, sensitivity, and F1-score. Two 
different variations of CNN and an LSTM model, TSE-CNN [89], LSTM-CNN [35], and 
Bi-LSTM [90], achieved very similar accuracies of 95.70%, 95.85%, and 95.86%, respec-
tively. The CNN-BiLSTM [91] model attained an accuracy of 96.05% and an F1-score of 
96.04%, which is slightly better in accuracy but lower in F1-score compared to our pro-
posed GAT model. The GAT model, with an accuracy of 96.00%, a precision of 95.93%, 
a sensitivity of 98.50%, and an F1-score of 97.71%, demonstrates superior performance 
compared to all previously proposed models. While the CNN-GRU [92] model achieved 
marginally higher accuracy and precision, the GAT model excels significantly in sensi-
tivity and F1-score, indicating a better overall ability to correctly identify true positives 
and balance between precision and recall. Therefore, the GAT model is more robust and 
effective for the WISDM dataset than the previously existing state-of-the-art models.

This study suggests that combining DR and HAR in the early diagnosis of NIDDM 
holds promising potential for practical clinical practice. The system is smartphone-
based, making it accessible to the general population and more cost-effective than regu-
lar medical checkups. Since DR is one of many complications of NIDDM, future work 
could consider additional diabetes-related complications such as nephropathy, neurop-
athy, heart issues, and oral problems to enhance system robustness, given the clinical 
relationships between these complications and NIDDM [93].

Conclusion
In this work, diligent efforts were invested in devising a system named DiabSense for 
early diagnosis of type-2 Diabetes/NIDDM and validated it with medical testing reports. 
DiabSense shows great promise in effectively managing NIDDM during the early stages. 
The proposed system integrates human Diabetic Retinopathy (DR) conditions with dia-
betic risk factors acquired from daily human activity patterns to establish a final decision 
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for the early NIDDM diagnosis. This reduces the need for expensive routine medical 
checkups and reliance on symptoms until the system alerts for an early diagnosis posi-
tive. As NIDDM symptoms are absent in the early stages for most cases, the undiag-
nosed patients will get a chance to start their medical diagnosis as soon as DiabSense 
alerts them. The system relies exclusively on smartphones, eliminating the need for any 
other expensive components i.e., body sensors or medical fundus cameras. It efficiently 
consumes power by utilizing data from smartphone sensors at a 1 Hz frequency. The 
collection of experimental subjects data under varying conditions, phone positions, and 
intensities to account for energy loss caused by activities, along with the recognition of 
possible everyday activities related to NIDDM, including irrelevant activities to prevent 
false recognition, has significantly contributed to the overall robustness of the system. 
Adept pre-processing techniques and the incorporation of the latest Graph Atten-
tion Network (GAT) based Graphsensor and Graph Convolutional Network (GCN) 
based Vision GNN (ViG) classifiers for HAR and DR recognition tasks respectively 
further enhanced the systems prediction accuracies from the traditional deep learning 
approaches. The comparison between DiabSense outcomes and clinical A1C tests con-
firms its reliability for accurate early diagnosis assessments. According to the results, if 
the proposed technique is adopted clinically for the early diagnosis of diabetics, millions 
of human lives can be benefited worldwide.

The proposed system was designed to facilitate the accurate early detection of NIDDM 
by incorporating both DR and HAR. This objective was successfully achieved, as evi-
denced by reliable early diagnosis predictions for all four experimental subjects. The 
models developed for the DR and HAR phases of this system also demonstrated supe-
rior accuracy, precision, recall, and F1-score compared to existing models. The proposed 
ensembled ViG + EfficientNet-B5 model showed improvements of 0.17% in accuracy, 
2.07% in precision, 1.55% in sensitivity, and 0.31% in F1-score for DR grading compared 
to previous models. Additionally, our GAT model achieved a 2.08% improvement in 
sensitivity and a 1.32% improvement in the F1-score for HAR on the WISDM dataset. 
These advancements were made possible by the innovative approach of DiabSense. The 
novel ensembled ViG + EfficientNet-B5 model in DiabSense uniquely considered both 
regular and irregularly shaped retinal fundus image lesions, unlike existing research that 
focused solely on regular lesion shapes. Similarly, the GAT model in DiabSense captured 
the internal connections in time-series tri-axial smartphone sensor data, which previ-
ous models neglected by primarily focusing on temporal dependence. DiabSense clearly 
demonstrates substantial improvements and provides a novel methodology for early 
NIDDM diagnosis, setting a new benchmark in the field.

One of the few limitations of this work was during the HAR data collection process, 
where data was only collected when the smartphone was in the participant’s pants 
pocket. However, it is impractical to carry a phone like this constantly. Additionally, 
individuals might not always have their smartphones with them when they are sleep-
ing. A technique to detect sleep using smartphones must be developed. The Aptos 2019 
dataset was developed solely from subjects of Asian descent, hence the HAR dataset was 
chosen not to include volunteers from other continents, but rather exclusively from Asia 
due to ethnic factors influencing the risk of NIDDM.
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Looking ahead, we aim to broaden the scope of the DiabSense system by considering 
additional Diabetes-related complications such as nephropathy, neuropathy, heart issues, 
and oral problems, thereby enhancing its robustness. A multimodal dataset consisting of 
retinal fundus images and time-series sensor data from the same subjects can be devel-
oped and utilized for model training. The HAR dataset can be expanded to include a large 
number of volunteers from all over the world. Although this research centered on smart-
phones, integrating handheld devices like smartwatches would further fortify the study.
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