Organizational Culture Assessment Based on a Values-Based Coaching Program for Strategic Level Employees: The Case of GEDEME, Cuba

Artículo Materias > Ciencias Sociales Universidad Europea del Atlántico > Investigación > Producción Científica
Fundación Universitaria Internacional de Colombia > Investigación > Artículos y libros
Universidad Internacional Iberoamericana México > Investigación > Producción Científica
Universidad Internacional Iberoamericana Puerto Rico > Investigación > Producción Científica
Universidad Internacional do Cuanza > Investigación > Producción Científica
Universidad de La Romana > Investigación > Producción Científica
Abierto Inglés To improve organisational performance, it is crucial to cultivate an environment and culture that, through shared values, attitudes, behaviours, and sentiments, enables all employees to feel comfortable in performing their work. This represents a recognised gap within the current Cuban business context. Drawing from identified challenges and the introduction of a values-based coaching programme at the state-owned company GEDEME to address this gap, the aim of this study is to evaluate the impact of the values-based coaching programme (CpV) on organisational culture among both tactical and strategic employees within GEDEME. The research adopts a mixed-methods design. On one hand, the non-parametric McNemar test was utilised to assess before-and-after differences, while a case-study approach facilitated the exploration of specific questions, such as identifying the values actually practised beyond those outlined in the formal business plan and understanding the extent and nature of value shifts following the implementation of the coaching programme. The results confirmed the primary hypothesis: the values-based coaching programme at GEDEME had a positive effect on employees' perceptions of organisational culture, resulting in a substantial increase in the number of values both practised and perceived by its members. metadata Caro Montero, Elizabeth; Soriano Flores, Emmanuel; Silva Alvarado, Eduardo René y Garat de Marin, Mirtha Silvana mail elizabeth.caro@uneatlantico.es, emmanuel.soriano@uneatlantico.es, eduardo.silva@funiber.org, silvana.marin@uneatlantico.es (2024) Organizational Culture Assessment Based on a Values-Based Coaching Program for Strategic Level Employees: The Case of GEDEME, Cuba. International Journal of Instructional Cases, 8 (2). pp. 139-163. ISSN 2399-830x

[img] Texto
8-FINAL+4)+(139-163).pdf

Descargar (958kB)

Resumen

To improve organisational performance, it is crucial to cultivate an environment and culture that, through shared values, attitudes, behaviours, and sentiments, enables all employees to feel comfortable in performing their work. This represents a recognised gap within the current Cuban business context. Drawing from identified challenges and the introduction of a values-based coaching programme at the state-owned company GEDEME to address this gap, the aim of this study is to evaluate the impact of the values-based coaching programme (CpV) on organisational culture among both tactical and strategic employees within GEDEME. The research adopts a mixed-methods design. On one hand, the non-parametric McNemar test was utilised to assess before-and-after differences, while a case-study approach facilitated the exploration of specific questions, such as identifying the values actually practised beyond those outlined in the formal business plan and understanding the extent and nature of value shifts following the implementation of the coaching programme. The results confirmed the primary hypothesis: the values-based coaching programme at GEDEME had a positive effect on employees' perceptions of organisational culture, resulting in a substantial increase in the number of values both practised and perceived by its members.

Tipo de Documento: Artículo
Palabras Clave: Values-based coaching, Organisational culture, Employee perceptions, Mixed-methods research, Cuban business context
Clasificación temática: Materias > Ciencias Sociales
Divisiones: Universidad Europea del Atlántico > Investigación > Producción Científica
Fundación Universitaria Internacional de Colombia > Investigación > Artículos y libros
Universidad Internacional Iberoamericana México > Investigación > Producción Científica
Universidad Internacional Iberoamericana Puerto Rico > Investigación > Producción Científica
Universidad Internacional do Cuanza > Investigación > Producción Científica
Universidad de La Romana > Investigación > Producción Científica
Depositado: 27 Feb 2025 23:30
Ultima Modificación: 27 Feb 2025 23:30
URI: https://repositorio.unincol.edu.co/id/eprint/16849

Acciones (logins necesarios)

Ver Objeto Ver Objeto

<a class="ep_document_link" href="/17862/1/sensors-25-06419.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Edge-Based Autonomous Fire and Smoke Detection Using MobileNetV2

Forest fires pose significant threats to ecosystems, human life, and the global climate, necessitating rapid and reliable detection systems. Traditional fire detection approaches, including sensor networks, satellite monitoring, and centralized image analysis, often suffer from delayed response, high false positives, and limited deployment in remote areas. Recent deep learning-based methods offer high classification accuracy but are typically computationally intensive and unsuitable for low-power, real-time edge devices. This study presents an autonomous, edge-based forest fire and smoke detection system using a lightweight MobileNetV2 convolutional neural network. The model is trained on a balanced dataset of fire, smoke, and non-fire images and optimized for deployment on resource-constrained edge devices. The system performs near real-time inference, achieving a test accuracy of 97.98% with an average end-to-end prediction latency of 0.77 s per frame (approximately 1.3 FPS) on the Raspberry Pi 5 edge device. Predictions include the class label, confidence score, and timestamp, all generated locally without reliance on cloud connectivity, thereby enhancing security and robustness against potential cyber threats. Experimental results demonstrate that the proposed solution maintains high predictive performance comparable to state-of-the-art methods while providing efficient, offline operation suitable for real-world environmental monitoring and early wildfire mitigation. This approach enables cost-effective, scalable deployment in remote forest regions, combining accuracy, speed, and autonomous edge processing for timely fire and smoke detection.

Producción Científica

Dilshod Sharobiddinov mail , Hafeez Ur Rehman Siddiqui mail , Adil Ali Saleem mail , Gerardo Méndez Mezquita mail , Debora L. Ramírez-Vargas mail debora.ramirez@unini.edu.mx, Isabel de la Torre Díez mail ,

Sharobiddinov

<a class="ep_document_link" href="/17849/1/1-s2.0-S2590005625001043-main.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Ultra Wideband radar-based gait analysis for gender classification using artificial intelligence

Gender classification plays a vital role in various applications, particularly in security and healthcare. While several biometric methods such as facial recognition, voice analysis, activity monitoring, and gait recognition are commonly used, their accuracy and reliability often suffer due to challenges like body part occlusion, high computational costs, and recognition errors. This study investigates gender classification using gait data captured by Ultra-Wideband radar, offering a non-intrusive and occlusion-resilient alternative to traditional biometric methods. A dataset comprising 163 participants was collected, and the radar signals underwent preprocessing, including clutter suppression and peak detection, to isolate meaningful gait cycles. Spectral features extracted from these cycles were transformed using a novel integration of Feedforward Artificial Neural Networks and Random Forests , enhancing discriminative power. Among the models evaluated, the Random Forest classifier demonstrated superior performance, achieving 94.68% accuracy and a cross-validation score of 0.93. The study highlights the effectiveness of Ultra-wideband radar and the proposed transformation framework in advancing robust gender classification.

Producción Científica

Adil Ali Saleem mail , Hafeez Ur Rehman Siddiqui mail , Muhammad Amjad Raza mail , Sandra Dudley mail , Julio César Martínez Espinosa mail ulio.martinez@unini.edu.mx, Luis Alonso Dzul López mail luis.dzul@uneatlantico.es, Isabel de la Torre Díez mail ,

Saleem

<a href="/17864/1/s10115-025-02588-y.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Advancing fake news combating using machine learning: a hybrid model approach

The digital era, while offering unparalleled access to information, has also seen the rapid proliferation of fake news, a phenomenon with the potential to distort public perception and influence sociopolitical events. The need to identify and mitigate the spread of such disinformation is crucial for maintaining the integrity of public discourse. This research introduces a multi-view learning framework that achieves high precision by systematically integrating diverse feature perspectives. Using a diverse dataset of news articles, the approach combines several feature extraction methods, including TF-IDF for individual words (unigrams) and word pairs (bigrams), and counts vectorization to represent text in multiple ways. To capture additional linguistic and semantic information, advanced features, such as readability scores, sentiment scores, and topic distributions generated by latent Dirichlet allocation (LDA), are also extracted. The framework implements a multi-view learning strategy, where separate views focus on basic text, linguistic, and semantic features, feeding into a final ensemble model. Models like logistic regression, random forest, and LightGBM are employed to analyze each view, and a stacked ensemble integrates their outputs. Through rigorous tenfold cross-validation, our proposed multi-view ensemble achieves a state-of-the-art accuracy of 0.9994, outperforming strong baselines, including single-view models and a BERT-based classifier. Robustness testing confirms the model maintains high accuracy even under data perturbations, establishing the value of structured feature separation and intelligent ensemble techniques.

Producción Científica

Zahid Aslam mail , Malik Muhammad Saad Missen mail , Arslan Abdul Ghaffar mail , Arif Mehmood mail , Mónica Gracia Villar mail monica.gracia@uneatlantico.es, Eduardo René Silva Alvarado mail eduardo.silva@funiber.org, Imran Ashraf mail ,

Aslam

<a class="ep_document_link" href="/17865/1/International%20Journal%20of%20Intelligent%20Systems%20-%202025%20-%20Shafi%20-%20Scalable%20Comprehensive%20Automatic%20Inspection%20%20Cleaning%20%20and.pdf"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Scalable Comprehensive Automatic Inspection, Cleaning, and Evaluation Mechanism for Large‐Diameter Pipes

Cleaning and inspection of pipelines and gun barrels are crucial for ensuring safety and integrity to extend their lifespan. Existing automatic inspection approaches lack high robustness, as well as portability, and have movement restrictions and complexity. This study presents the design and development of a scalable, comprehensive automated inspection, cleaning, and evaluation mechanism (CAICEM) for large-sized pipelines and barrels with diameters in the range of 105 mm–210 mm. The proposed system is divided into electrical and mechanical assemblies that are independently designed, tested, fabricated, integrated, and controlled with industrial grid controllers and processors. These actuators are suitably programmed to provide the desired actions through toggle switches on a simple housing subassembly. The stress analysis and material specifications are obtained using ANSYS to ensure robustness and practicability. Later, on-ground testing and optimization are performed before industrial prototyping. The inspection system of the proposed mechanism includes barrel-mounted and brush-mounted cameras with sensors utilized to keep track of the pipeline deposits and monitor user activity. The experimental results demonstrate that the proposed mechanism is cost-effective and achieves the desired objectives with minimum human efforts in the least possible time for both smooth and rifled large-diameter pipes and barrels.

Producción Científica

Imran Shafi mail , Imad Khan mail , Jose Breñosa mail josemanuel.brenosa@uneatlantico.es, Miguel Ángel López Flores mail , Julio César Martínez Espinosa mail ulio.martinez@unini.edu.mx, Jin-Ghoo Choi mail , Imran Ashraf mail , Richard Murray mail ,

Shafi

<a href="/17831/1/s43856-025-01020-4.pdf" class="ep_document_link"><img class="ep_doc_icon" alt="[img]" src="/style/images/fileicons/text.png" border="0"/></a>

en

open

Association between blood cortisol levels and numerical rating scale in prehospital pain assessment

Background Nowadays, there is no correlation between levels of cortisol and pain in the prehospital setting. The aim of this work was to determine the ability of prehospital cortisol levels to correlate to pain. Cortisol levels were compared with those of the numerical rating scale (NRS). Methods This is a prospective observational study looking at adult patients with acute disease managed by Emergency Medical Services (EMS) and transferred to the emergency department of two tertiary care hospitals. Epidemiological variables, vital signs, and prehospital blood analysis data were collected. A total of 1516 patients were included, the median age was 67 years (IQR: 51–79; range: 18–103) with 42.7% of females. The primary outcome was pain evaluation by NRS, which was categorized as pain-free (0 points), mild (1–3), moderate (4–6), or severe (≥7). Analysis of variance, correlation, and classification capacity in the form area under the curve of the receiver operating characteristic (AUC) curve were used to prospectively evaluate the association of cortisol with NRS. Results The median NRS and cortisol level are 1 point (IQR: 0–4) and 282 nmol/L (IQR: 143–433). There are 584 pain-free patients (38.5%), 525 mild (34.6%), 244 moderate (16.1%), and 163 severe pain (10.8%). Cortisol levels in each NRS category result in p < 0.001. The correlation coefficient between the cortisol level and NRS is 0.87 (p < 0.001). The AUC of cortisol to classify patients into each NRS category is 0.882 (95% CI: 0.853–0.910), 0.496 (95% CI: 0.446–0.545), 0.837 (95% CI: 0.803–0.872), and 0.981 (95% CI: 0.970–0.991) for the pain-free, mild, moderate, and severe categories, respectively. Conclusions Cortisol levels show similar pain evaluation as NRS, with high-correlation for NRS pain categories, except for mild-pain. Therefore, cortisol evaluation via the EMS could provide information regarding pain status.

Producción Científica

Raúl López-Izquierdo mail , Elisa A. Ingelmo-Astorga mail , Carlos del Pozo Vegas mail , Santos Gracia Villar mail santos.gracia@uneatlantico.es, Luis Alonso Dzul López mail luis.dzul@uneatlantico.es, Silvia Aparicio Obregón mail silvia.aparicio@uneatlantico.es, Rubén Calderón Iglesias mail ruben.calderon@uneatlantico.es, Ancor Sanz-García mail , Francisco Martín-Rodríguez mail ,

López-Izquierdo